
AVR-BED Development Board v2-0.docx Page 1 of 16 Last revised: 17 May 2020 MJB

AVR-BED
Embedded Development Board

Design, Construction and Operation

Michael J. Bauer
Swinburne University of Technology

(PAVE Division, TET Engineering Dept)
Melbourne, Australia

AVR-BED Development Board v2-0.docx Page 2 of 16 Last revised: 17 May 2020 MJB

Foreword

Construction of prototype circuit boards for electronic apparatus is an essential skill for any

engineer or technician planning a career in the electronics and communications industries.

Building your own microcontroller development board will not only improve your workshop

skills, but the completed product will serve well as a hardware platform for learning embedded

programming skills. That is its primary intended purpose.

The AVR-BED is designed to be largely compatible with the “AVR-Pad” board used at Swinburne

in microcontroller and embedded systems study units. Unlike the AVR-Pad, the AVR-BED’s

wiring is permanent. Once wired up, it never needs to be re-patched to suit different projects.

Having your own development platform avoids the need to re-wire a shared AVR-Pad, and/or to

fix faults with it, at the start of each practical session. You can also work at home at your own

convenience to improve your learning experience.

All of the parts needed to build an AVR-BED are available at ridiculously low prices from online

suppliers via AliExpress, eBay, etc. Note that postage from Chinese suppliers, although very

cheap (sometimes free), can take a while, typically 2 ~ 4 weeks. (See Parts List.)

Addendum (v2)

To make construction even simpler, an alternative design for the AVR-BED is based on the

Arduino “Nano” board (rev 3). Compatible clones are available for less than $3.00 (AUD). The

Nano board replaces many components on the AVR-BED, including the MCU chip (ATmega328P),

USB-serial bridge, ISP programming port and Reset button.

Refer to the Addendum (starting on page 13) for more details.

References

[1] AVR-BED Library Reference Manual

[2] AVR-BED Test & Demo program (File: avrbed_test_demo_v#.#.hex)

[3] AVR-BED Code Library – Zip folder containing AVR-BED doc’s and code samples …

(download from www.mjbauer.biz/mjb_resources.htm)

[4] AVR-BED Nano / AVR X-mini Code Library (incl. program samples) …

(download from www.mjbauer.biz/mjb_resources.htm)

[5] ATmega48/88/168 Data-sheet (download from Atmel’s website)

http://www.mjbauer.biz/mjb_resources.htm
http://www.mjbauer.biz/mjb_resources.htm

AVR-BED Development Board v2-0.docx Page 3 of 16 Last revised: 17 May 2020 MJB

Design

In common with Swinburne’s “AVR-Pad”, the AVR-BED is based on Atmel’s ATmega88PA

microcontroller. The (pin-compatible) ATmega328P may be substituted if more memory is

needed. The board incorporates a 2-line x 16-character LCD module, a strip of 8 LEDs, four push-

buttons (labelled A, B, C & D) and a rotary potentiometer providing a 0..5V analogue signal

source. One extra LED is provided for use as a “debug” indicator or whatever.

In addition, the AVR-BED incorporates a USB-serial adapter (FTDI FT232RL breakout board)

interfaced to the ATmega88 on-chip UART, allowing serial data communication with a host PC.

The USB connector (mini-B) provides 5V DC power to the board. Applications for the USB-serial

port, using a PC terminal emulator (e.g. PuTTY) include:-

• Program debugging aid (“trace” output),

• Data logging to the host PC,

• Command-line user-interface (CLI).

Contrary to the AVR-Pad, the AVR-BED does not have an on-board 4x4 keypad, LM335

temperature sensor, SPI DAC, low-pass RC filter, or piezo transducer (beeper). These and other

devices can be connected externally, if required, via pin headers fitted on the board. A pin header

also makes the IIC peripheral bus signals (SCL, SDA) available for I/O expansion.

The MCU pin allocations and peripheral interconnection scheme are designed so that all of the

on-board resources (and external resources) are able to operate “concurrently”, assuming

appropriate driver software. A peripheral function library has been developed to support

operation of on-board resources, plus an add-on 4x4 keypad. The function library helps to flatten

the “learning curve” for beginners in embedded C programming.

The LED strip (8 LEDs connected to Port B) may be driven by writing directly to PORTB (output

register). Other peripherals which share Port B (e.g. LCD, keypad) will not disrupt the LED

display, provided that the other driver functions restore the bits in PORTB on exit and are not

executed excessively frequently. The author’s AVR-BED library behaves in this manner.

Pin PD7 is dedicated to the on-board "debug" LED, typically used for a "heart-beat" (1Hz pulse).

The potentiometer may be jumpered to either PC1/ADC1 or PC3/ADC3, or disconnected.

There is a jumper option to connect PD6/OC0A to the LCD backlight switch for control of

brightness, or it may be jumpered to enable the LCD backlight always.

Six I/O pins are brought out to pin headers for external use: PC2, PC3, PC4, PC5, PD5 & PD6.

These may be used variously for GPIO, PWM output, or ADC input. PC4/SDA and PC5/SCL may

be configured to run an IIC peripheral bus, allowing a variety of external devices to be connected

at the same time. The IIC bus SIL4 header also provides +5V and GND pins.

PC2/ADC2 and PC3/ADC3 are available for external analogue input or GPIO. Pins PC4 and PC5

may also be used as ADC inputs, or GPIO, provided the IIC peripheral bus is not needed.

Pin PD6/OC0A may be used for external GPIO or PWM output. Pin PD5/OC0B may also be used

for PWM output, or GPIO, provided that neither button-D nor the add-on 4x4 keypad are needed.

AVR-BED Development Board v2-0.docx Page 4 of 16 Last revised: 17 May 2020 MJB

Fig. 1 – AVR-BED Schematic

Block diagram showing port pin assignments and peripheral connections.

AVR-BED Development Board v2-0.docx Page 5 of 16 Last revised: 17 May 2020 MJB

Fig. 2 – AVR-BED Circuit Diagram

AVR-BED Development Board v2-0.docx Page 6 of 16 Last revised: 17 May 2020 MJB

AVR-BED Development Board v2-0.docx Page 7 of 16 Last revised: 17 May 2020 MJB

Construction

The AVR-BED is built on a piece of prototyping board of the sort that has a matrix of isolated

pads on a 2.54mm (0.1 inch) grid. Ideally, use a double-sided plated-through board made of

fibre-glass (as opposed to phenolic/paper material which is inferior). These boards are readily

available in size 90 x 150 mm. The board should be cut to measure 90 x 120 mm.

Drill four 3.5mm mounting holes in the corners, centred 3.5mm in from the edges of the board.

Referring to the layout drawing above, mark positions of mounting holes for the LCD module and

drill 3mm holes there.

Mount the LCD module on the board using plastic spacers about 3 ~ 5mm high.

Feed bare tinned copper wires (24 ~ 26 AWG, length ~20mm) through the 16 connector pads,

each passing through an aligned pad on the proto board. Bend the wires on top of the LCD

module and under the proto board to keep them in place. Solder the wires on the LCD pads and

on the proto board pads underneath. Trim excess wire from soldered pads.

Alternatively, a single-row 16-way pin header may be used to connect the LCD module to the

board, but this would be more difficult to remove if the LCD module became faulty and needed

to be replaced. On the other hand, there is no need for screws or spacers with this method.

Because the board will be upside-down often while soldering wires on the underside, it is

recommended to attach temporary standoffs (6mm diameter, 20 ~ 30mm long) in each corner

of the board, on the top-side, so that it rests stably upside-down on your workbench. Better still,

if there is one available, use a circuit board vice-stand which holds the board in any desired

position for soldering.

Next mount the USB-serial adapter module. Annoyingly, these usually come with a right-angle

strip header already soldered in place. It has to be removed. The trick is to remove each pin

individually. Apply heat with your soldering iron to a pin on the underside of the board. At the

same time, grab the pin on the top-side with a small pair of pliers and pull it out.

Fix the USB adapter in place using a small piece of double-sided foam mounting tape of the sort

used to mount mirrors, etc, on walls. Make sure the 6 connector pads are aligned with pads on

the proto board. In similar manner to the LCD module, solder wires from the USB module to

corresponding pads on the proto board. (Or use the pins that were removed.)

Proceed to solder remaining components in place, as shown in the layout drawing. Be sure to get

the orientation correct for polarized components, including connectors. Pin 1 of each connector

is marked with an arrow on the layout drawing. Use an IC socket (28-pin DIL narrow) for the

ATmega88 MCU and don’t fit the MCU in the socket until all wiring is completed and checked.

Keep offcuts of wire trimmed from component leads. These come in handy for short wiring hops.

The LEDs should be mounted such that they are raised 2 ~ 3mm off the board. This prevents

strain on the leads caused by thermal stress (after soldering) which can destroy a LED.

Suggestion: To make standoffs for LEDs, cut 9 short lengths (~3mm) off some PVC insulation

sleeving (2.5mm inside diameter) which may be stripped from suitable cable.

Referring now to the underside wiring diagram, run bare tinned copper wire around the

perimeter of the board, following the outermost pads, steering clear of mounting holes. This is

the GND rail. Complete all connections to GND with bare wire, as shown in the diagram.

AVR-BED Development Board v2-0.docx Page 8 of 16 Last revised: 17 May 2020 MJB

Most of the connections to Vcc (+5V) can also be made using bare wire. Otherwise, use hook-up

wire on the underside, or a wire link on the top side, in either case using insulated wire.

Signal wiring is best done with 30AWG insulated hook-up wire on the underside of the board.

Kynar insulation is preferable, but expensive and hard to find these days. PVC insulated wire is

acceptable and much cheaper. Get a few different colours. A few metres will suffice.

Carefully following the schematic diagram, complete the signal wiring. Cut hook-up wires a few

mm longer than direct point-to-point distance, so they can be moved out of the way when adding

further wires. Strip about 1.5 ~ 2mm of insulation from each end, taking care not to nick the wire

as this will likely cause it to break off at the solder joint.

Where there is more than one wire to be soldered to the same pad, they need to be held in place

and soldered together. There are many connections to port B pins. The LED series resistor leads

can be trimmed so that there is about 2.5mm excess length. The wire stubs can be bent over to

hold one or more wires in place on the pad while soldering. (See magnified view of LED resistor

pads.) Avoid wiggling existing wires about too much, because they break off easily.

When done wiring, it is highly recommended to check it for point-to-point continuity and for

short-circuits using a multi-meter on the low Ohms range (or beeper). In particular, check that

Vcc is not shorted to GND! Then fit the ATmega88 MCU chip in its socket. Set the LCD contrast

adjust trimmer to about half way. Place a jumper on the “LCD backlight” header so that the LCD

backlight is always ON, i.e. not controlled by PD6.

Now it’s time for the smoke test. Connect your AVR-BED to a 5V power source via the USB port.

The LCD backlight should be on. If not, remove the power cable and trouble-shoot the problem.

Otherwise, check with a DMM that +5V is present on all Vcc points, starting at the FT232 module.

Double check voltages on Vcc and GND pins on the AVRISP pin header. If the DC voltages are

correct and you don’t see any smoke, your AVR-BED is ready for testing with software.

Operation

In the AVR-BED documentation pack, you should find a test program. This is a file named

“avrbed_test_demo.hex”. You’ll need Atmel Studio 7 IDE software installed on your PC or Mac.

You will also need a programming tool, i.e. Atmel AVR-ISP mkII, or compatible. Chinese clones

are available from online suppliers for about $15~$20 plus postage.

NB: The AVR-ISP USB driver incorporated in the Atmel Studio install does not support the cheap

Chinese clones, but there is a 3rd-party driver available which does. Details on where to find the

driver software and installation instructions may be found in the AVR-BED doco pack.

How to load the test program (hex object file) into Atmel Studio 7 and download it to the

ATmega88 MCU flash program memory…

Plug your AVRISP mkII (clone) into a USB port on the host PC then start Atmel Studio. Connect

the ISP ribbon-cable plug to the ISP header on your AVR-BED and power up the board.

From the Tools menu, select Device Programming. A pop-up window entitled “Device

Programming” should appear with “Interface Settings” selected from the left side menu. Enter

the target device, ATMEGA88PA, from the drop-down list. Click the Apply button. You should see

a slider to set the ISP clock rate. If it is shown, leave the ISP Clock set to 125kHz. If not, the

problem is most likely the USB driver is not installed properly.

AVR-BED Development Board v2-0.docx Page 9 of 16 Last revised: 17 May 2020 MJB

Now click the “Read” button under Device Signature. The AVRISP should fetch an ID number out

of the ATmega88 MCU and display it (6 hex digits). If it fails, there could be a fault in the ISP

header wiring, but first check that the ISP plug is in the right way around.

Select “Fuses” from the left side menu. Scroll down the list of Fuse Names until you see the name

“LOW.CKDIV8”. Clear the tick-box if not already cleared. This makes the CPU internal RC

oscillator run at 8MHz, whereas the default is 1MHz.

Next select “Memories” from the left side menu. Under the heading “Flash (8 KB)” there is a field

showing the selected object file. Click the browse button (at right end of this field) and navigate

to the folder where you copied the object file: avrbed_test_demo.hex. Select this file.

AVR-BED Development Board v2-0.docx Page 10 of 16 Last revised: 17 May 2020 MJB

Click the “Program” button. The program should download to your AVR-BED. When the

download is finished, the program should start running. It’s wise to disconnect the AVRISP tool

and press the RESET button on the board to ensure the tool doesn’t affect program operation.

(Note: The ISP interface shares a few I/O pins on Port B of the MCU.)

When you have the test program running, follow the prompts on the LCD screen, assuming the

LCD module is functioning properly. If not, trouble-shoot the problem before proceeding. Refer

to comments in the C source code to understand how the program operates.

The program works best with a terminal emulator app (e.g. “PuTTY”) running on the host PC.

When you plug the AVR-BED USB cable into the host PC for the first time, it should install driver

software for the USB-serial bridge (FTDI FT232RL) automatically. If this doesn’t happen,

perhaps because you’re running an older version of Windows, you might need to download a

driver from FTDI’s website and install it manually.

Assuming the USB driver installed OK, open up Windows “Device Manager” utility and click on

“Ports (COM & LPT)”. You should see the FTDI USB-serial device listed. Note the number of the

associated “COM” port and use this number when setting up PuTTY for serial comm’s. Set the

Baud rate in PuTTY to 9600. When a PuTTY session is started, press the RESET button on your

AVR-BED. A start-up message should appear in the terminal window.

Have fun!

AVR-BED Development Board v2-0.docx Page 11 of 16 Last revised: 17 May 2020 MJB

Table 1. AVR-BED Parts List

Component Description Qty Cost A$

Prototyping board 90 x 150 mm

Dot matrix, 2.54mm (0.1”) grid

Fibreglass (1.5mm)

Double-sided, plated through holes

1 2.60

(free
postage)

USB-serial adapter module

FTDI FT232RL breakout board

with USB mini-B connector

1 2.60

(+0.24)

LCD module 1602A

2 line x 16 characters

LED backlight

(white on blue, or black on yellow/green)

HD44780 (compatible) controller

Dimensions: 75 x 36 mm

Connector strip (16-way) upper LHS

1 1.20

(+1.30)

IC socket, 28 pin, DIL, narrow (0.3”) 1 2.70

(qty 5)

Microcontroller

ATMEGA88PA-PU

(or ATMEGA328P-PU)

28-pin plastic DIP

1 4.40

(+0 pp)

(qty 2)

LED, 3mm round, diffused lens

8 x blue + 1 x red, or…

8 x red + 1 x green, or…

(your choice of colours)

9 1.00

(+0)

(qty 100)

Potentiometer, rotary, 10k ohm

B-taper (linear)

PCB mounting, vertical

12 x 12 mm (approx.)

1 1.50

(+0)

(qty 10)

Push-button switch, SPST, tactile

PCB mount (straight) 6 x 6 mm

Short actuator (2 ~ 4mm)

5 1.00

(qty 20)

Prototyping (wire wrap) wire

Insulated (Kynar or PVC)

30AWG

Assorted colours (10 colours x 2m)

5m

2.00

(+2.00)

(20m)

AVR-BED Development Board v2-0.docx Page 12 of 16 Last revised: 17 May 2020 MJB

USB cable

Type-A (host) to mini-B (device)

Length 1.0 ~ 1.5m

1 0.80

(+0)

Keypad

16 keys wired in 4x4 matrix

8-way connector strip

Telephone dialler layout

1 2.60

(+1.12)

Programming Tool

Atmel AVRISP mkII (compatible*) with

USB cable and 10-to-6-pin ISP adapter

(*Chinese clone, cost AU $15 ~ $20)

1 16.30

(+7.70)

Wire jumpers, set of 20

Length 150 ~ 200 mm

Female contacts both ends

Assorted colours

(for connecting external I/O devices)

1 set 1.17

(+1.88)

Sundry components
available from Jaycar, etc.

PCB pin header, 6 way, double row (2x3) 1 9.00

(+ pp) PCB pin header, 10 way, double row (2x5) 1

PCB pin header, 3 way, single row, shroud 1

PCB pin header, 4 way, single row, shroud 1

PCB pin header, 6 way, single row, shroud 1

PCB pin header, 3 way, single row, plain 2

Transistor, BC337 (TO92 pkg) 1

Trim pot. 10k linear, single turn, PCB horiz. 1

Capacitor, mono ceramic, 100nF (50V) 4

Capacitor, electro. RB 47uF (16~63V) 1

Inductor / RFC, ferrite, 100uH (200mA) 1

Resistor, metal film, 470 ohm, ¼ W 8

Resistor, metal film, 1k ohm, ¼ W 8

Resistor, metal film, 4.7k ohm, ¼ W 1

Resistor, metal film, 10k ohm, ¼ W 2

 Total cost (estimate): $60.00

AVR-BED Development Board v2-0.docx Page 13 of 16 Last revised: 17 May 2020 MJB

Addendum – “AVR-BED Nano” (alternative build)

To make construction even simpler, an alternative design for the AVR-BED is based on the

Arduino “Nano” board (rev 3). Compatible clones are available for less than $3.00 (AUD). The

Nano board replaces many components on the AVR-BED, including the MCU chip (ATmega328P),

USB-serial bridge, ISP programming port and Reset button. This design greatly reduces the

number of hook-up wires needed to be soldered on the underside of the board.

The “AVR-BED Nano” (aka “Nano-BED”) works in the Arduino environment, of course, because

that is what it was designed to do. However, the Nano can be programmed in the Atmel Studio

IDE as well, without requiring any additional hardware Programming Tool (i.e. an AVRISP mkII).

See Appendix A for instructions on how to configure Atmel Studio 7 to program the Nano board

using the on-chip Arduino bootloader.

The picture below shows the envisaged AVR-BED Nano prototype board layout. Note that this

picture is not a photograph of a real Nano-BED, but rather a (badly) “Photoshopped” image. The

construction method is similar to the original AVR-BED. The Arduino Nano usually comes with

pin headers intended to be soldered onto the board. The base (prototyping) board should have

soldered onto it a pair of SIL strip headers with female contacts (like an IC socket) into which the

Nano board is plugged.

The suggested Nano-BED layout (pictured) leaves plenty of spare room for additional I/O

devices, for example: LM335 temperature sensor, SPI DAC & low-pass filter, piezo beeper, etc.

Following is the wiring diagram for the AVR-BED Nano. The diagram doesn’t include a 10-way

DIL pin header for connection of a numeric keypad as in the original AVR-BED, but this may be

added if needed. The 10-way header may be used for other I/O expansion purposes as well.

AVR-BED Development Board v2-0.docx Page 14 of 16 Last revised: 17 May 2020 MJB

Fig. A1 – “AVR-BED Nano” Circuit Diagram

AVR-BED Development Board v2-0.docx Page 15 of 16 Last revised: 17 May 2020 MJB

The only significant differences between the Nano-BED and the original AVR-BED are

summarized in this table:

Platform CPU clock freq. PB7 pin alloc. PB6 pin alloc.

AVR-BED 8 MHz (internal osc.) GPIO (LED, LCD) GPIO (LED, LCD)

Nano-BED 16 MHz (crystal) N/A (XTAL2) N/A (XTAL1)

Note in particular that the Nano board uses 2 pins of port B for the system clock (crystal). This

precludes the use of port B to interface the LCD module in 8-bit bus mode. Fortunately, the same

LCD module (1602A) can be interfaced to the ATmega328P in 4-bit bus mode, as shown in the

circuit diagram (Fig. A1). With the exception of port B pins PB6 and PB7, all I/O pin allocations

are compatible with the AVR-BED.

The change in LCD interface mode requires a modified peripheral function library to suit the

Nano-BED. A compatible library is available on the author’s website. (See References on page 1.)

The same library can also be used with the Atmel ATmega328P “Xplained Mini” board.

Please be aware that the AVR-BED, Arduino Uno, Nano and Atmel “X-mini” boards all use

different methods for programming the target AVR micro-controller. Refer to manufacturer’s

instructions (user guides, etc) for programming and (where supported) debugging facilities.

Arduino boards, although designed for programming in the Arduino IDE software environment,

can also be programmed directly from within the Atmel Studio 7 IDE, without requiring any

additional hardware device (AVRISP mkII). However, it is necessary to create an “external

programming tool” (software configuration) in the IDE to drive the Arduino bootloader.

Instructions to implement this facility can be found in Appendix A; also in the AVR-BED

download package.

The Nano’s on-board USB-serial bridge can be used for serial data communications in a user

application program, in much the same way as the USB-serial adapter on the original AVR-BED.

The library test program shows how to implement serial comm’s using the UART functions to

transfer data to and from a PC terminal application (PuTTY).

AVR-BED Development Board v2-0.docx Page 16 of 16 Last revised: 17 May 2020 MJB

Appendix A – How to Program a Nano board under Atmel Studio

Programming the target device (Atmega328P) via the Nano on-board USB-serial bridge using

the Arduino bootloader, i.e. without using an AVRISP mkII or any other additional hardware

programming tool.

First you need to install Arduino IDE software on your PC, or at least the "AVRdude" components

included in the Arduino install. (It's probably easier to install the complete Arduino package.)

Open Atmel Studio, click in the menu "Tools/External tools".

You will see a dialog box asking for some parameters, as follows...

In Title, enter: "Program Nano board" or any name you prefer.

In Command: C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avrdude.exe

This may vary according to the installation directory of the Arduino IDE. Check the avrdude.exe

directory in your installation.

In Arguments (all on one line):

-C "C:\Program Files (x86)\Arduino\hardware\tools\avr\etc\avrdude.conf" -p atmega328p

-c arduino -P COM4 -b 57600 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

Again this can vary according to the installation directory of the Arduino IDE.

Replace COM4 (in the Arguments field) with the actual COM port your Nano board is connected

to, as can be found in Windows Device Manager.

Check "Use output window" box. Click OK.

Done... You should see the new option "Program Nano board" in the tools menu.

How to Program an Arduino UNO board under Atmel Studio

Arduino Uno boards can be programmed under Atmel Studio using the same technique as the

Nano board, as described above, except for some unfathomable reason, the serial bootloader

Baud rate is different. In the Arguments field, replace “-b 57600” with “-b 115200”.

