AVR Embedded C Tutorial

A practical introduction to AVR embedded C programming for novices.

Michael J. Bauer
Swinburne University of Technology
Melbourne, Australia

Foreword

Thisis a selfstudy tutorial intended as a first course in embedded microcontroller programming

using a subset of the C language calle®d# AOOd | # 1 AT COIAKBO &oocéide® OE Al
to provide enough of C to developd O AA101 A6 ADPDPI EAAOEI T Oh xEEI A
complex constructs which novices might find overwhelming.

The software development environment (PC applicationused in this tutorial is Atmel Studio
IDE (version 7). This is a free download fromAtmél O j T O - EAOI AEEDP8OQ xAA«

Coding examplesand exercisesare targeted towards Atmel8-bit AVR microcontroller devices
specifically the ATmega8®Aor ATmega328Pas fitted onOEA AOOE-T @88 AO!GE 2A1 |

" % $development platforms. Where the text re/EA OO O1T O! 41 ACAyysdthab h O
device type fitted on your board. Likewisebe sure to substitute the code library file -name
applicable to your hardware platform. Refer to the Appendixat the end of this documentfor

details of various AVR deviepment board options.

Many of theprogram examplesin this tutorial usea pre-built function librar y to facilitate access
to peripheral devices such as displays, timers, pudtuttons, analogue inputs, etc. This approach
avoids the need for a detailed undestanding of peripheral driver code in the early stages of
learning when the focus is on C languaggyntax. Later in the tutorial, the source code comprising
library functions will be analysed for more advanced learning exercises.

Students are encouragedit OAZEAO O1 OEAAOK | PAEEDAT AR# - AT O
understand better the C language elements and constructs used in thede examples here.
Prerequisite Knowledge & Skills

The course assumes audimentary knowledge of Boolean logic and binary athmetic.

Practical skills in digital electronic circuits and systems incorporating microcontrollers,

peripheral devices, etc, willbe beneficial tolearning embedded programming

References

[1] O #ess ReferencéMlanuald(M.J. Bauerk Embedded C languagsubset

[2] AVRBEDDevelopment Boardz Article describing design andconstruction of a
microcontroller development board used in the programming exampls.

3] O! 62%$, EAOAOU 2 AzpPAripHeialAufction Aota® Al 6
[4] ATmega48/88/168 Data-shed (Atmel document number: DS40002074A)

AVR C Tutorial (draft- wip).docx Pagel of 56 Last revised:4 July 2020

Lesson 17 Simple I/O port bit manipulation

In this lesson,you will learn how to set up and use the microcontroller I/O port pins to drive one
or two LEDs. The internal circuit of an I/O pin is actually quite compbe because it carbe
configured (by programming MCUregisters) to serve a variety of differentpurposes. However,
when we get to writing the code to switch a LED on or off, it appears much simpler.

Before looking at the programming task,have a close look at the relevant sectiors of the
ATmega88datasheetin chapter 14: I/O-Ports, paying particular attention to section 14.2: Ports
as general digital I/O (GPIO)starting on page84.

Summary of MCU registers associated with general -DOODBT OA) ¥/ ' 0)/ qQ PEI

As shown in the datasheet, AVRnicrocontrollers incorporate a number of generaipurpose
8-bit input/output (I/O) ports , labelled A, B, C, D, etéach individual port pin(bit) can be set up
independently to implement either an input signal or an output sigal.

Port pins are configured, written to and read from, through a set 08 peripheral (1/O) registers,
as follows:

1 Data Direction Register (DDR x) - Sets the signal direction (input or output) for each of
the 8 1/0 pins in the port (wWhere x = A, B, C, D,.). A LOW (0) bit value n the DDR makes
the corresponding I/O pin function as an input; a HIGH (1) bit value makes the pin
function as an output. The DDR register data may be written to and read back, i.e. you can
read the value stored in the DDR to & which bits are outputsand which are inputs.

1 Port Register (PORTX) - Sets the output state (logic level, High or Low) of up to 8 I/10O
pins when configured as outputs. PORT registers may be written into or read from.

NB: Reading a PORT register does capture the logic levels othe external ping the data
read will be whatever was last written to the register.

Pins which are configured as inputs (i.e. DDR bit is set to 0) are not affected by
corresponding bits in the PORT register, except for the pullp resistor function (see
below for details).

1 PIN Register (PINX) - Reads the logic leved (High or Low) on all 8 pins of a port. For each
pin, the actual voltage on the external pin is measured and tralased to a logic level (High
or Low) which appearsin the PIN registerto be read, regardless of whether the pin is
configured as an input or output.

If the pin voltage is between VIL(max) and VIH(min), i.e. neither Low nor High, then the
bit value in the PIN register is indeterminate (could be 0 or 1). Viting to a PIN register
will have no effect, because it is "readnly”.

Pull -up resistor facility

I/O Pins which are configured as inputs (i.e. DDRbit is set to 0) will have a pultup resistor
connected to +VcqHigh) if the corresponding bit(s) in the PORK register are set HIGH (1);
otherwise the pull-up is disconnected.

Floating (unconnected) input pins should always have their pullup resistor enabled to avoid
noise pickup which could result in MCU malfunctin.

AVR C Tutorial (draft- wip).docx Page2 of 56 Last revised:4 July 2020

Recap on I/O register usage

Regardlessof the DDR and PORTX register bit values, reading the PINX register will always give
the actual logic states at the external pin. If the DD@bit is high (1), the voltage on the pin will
be affected by the outputegister PORK bit setting, so the input sate may not be asxpected
#AOA 1 600 AA OAEAT ET OEA ADPDPI EAAOEI TS0)T/
can be no contention between the PORTregister bit states and the external voltages gpied to
I/0O pins for any pin(s) configured as output(s).

Lastly, note that the internal pullup resistor is enabled (connected) only when the pin is
configured as an input (DDR bit = 0) and therespective PORKX register bit is set high (1).
Exercises

1. After power-on/reset of the MCU, what value (@r 1) will be in each bit of the registers:
DDRC, PORTC and PIND? (Think carefully about PIND.)

2. Port B is to be configured so that all pins are output¥Vhat bit values must bewritten
into the registers DDRB and PORTB if the initial output states are lbv@ Low (0)?

3. Port D is to be configured so that pins PD2, PD3, PD4 and PD5 are inputs while the other
4 pins areoutputs. What bit values must be written into the register DDRDPhe output
pins are to be set LOW. What bit values must be written into the resger PORTD?

4. Continuing from exercise 3, it is further required to enable internal pullup resistors on
the pins that have been configured as inputs. What bit values must be watt into the
register PORTD to enable the pullips, without affecting the outpu pin states?

5. Continuing from exercise 4assuming there are no external connections to any of the
Port D pins, what bit values would be found in register PIND when it is read?

6. Continuing from exercise 5, what bit values must be written into the register @RTD to
set output pins PD6 and PD7 = High (1) without changing any other pin states?

7. Continuing from exercise 6, what bit values would now be read from register PIND?
8. Why is ita good idea to enable internal pulups on any unused (unconnected) pins?

Next, we will learn how to write data into I/O registers and read data out of them using C code.

z A £ X

Butfirst,] AO6 O CAO OOAOOAA xEOE ! O0i A1l 3 0OO0OAEI 8

AVR C Tutorial (draft- wip).docx Page3 of 56 Last revised:4 July 2020

The programming environment i Getting started with Atmel Studio (7) IDE

Embedded microcontroller applications are usually developed on a host computer running
Windows, MacOS or Linux. Programs are written, compiled and builti.e. assembled into
executable OT A E A A Oon Ahe Adsbd émputer using a software application called an

OET OACOAOGAA AAOAI UDE). AT O AT GEOI 11 AT O6

AEA AGAAOOAAT A DPOT COAI 1T AEAAO AT AAQq OEOO AOE
controller device for testing. Thisisdone ® ET BroglamingTi 1 1 6 xEEAE AT 11T AAC
o# OEA 53" AT A O OE-AysApmGOAI AKODESAA | JAGBIQC EAIOA
OUOOATI OOAO A 0OI COAITETC 4111 ETTxT AO AT O«
a 6-pin DIL headeron the target board.

Yourfirst step is to download Atmel Studio 7 IDE and install it on your Windows PC or Mac

Start the application and create a new proegcAU Al EAEET C 11 O. Awp 00T F

window, which looks like this:

Start Page - AtmelStudio
File Edit View VAssistX ASF Project Debug Tools Window Help
-0 [8 -@ -2 W |92 -

‘ ‘ ‘ Hex ‘ W ! s

R ’ Debug Br

> v >

Start Page & X

Start Discover Atmel Studio

New Example Project... Getting started with Atmel Studio
Open Project...

Getting started with AVR development

~ o~ A s AN

A New Project popup window will appear, as shown below. Seledbtc# WBAAOOAAT A 0
from the list of options. Replace theA A EFA D1 & DPOT EAAO T AT A O' AR DDI I
appropriate name which will identify your project.

CEAAE OEA AT @ | ADBAA £D e sAdkdd 8y d&fEUD, 8hé ioject folder will

AA TTAAGAA 11 OEA ATl i Bofdé& A Dodumdnis Atddl SRIQEDA ET
Optionally, you canchoosea different location for the project folder and you can always copy the

project folder to another directory or drive.) 08 O xEOA O1T Al xAUuO | AEA A
#1 EAE O/ +06 AlpkEATANGEAEI BT ADPPAAO AOEEIT ¢ A O OE
device name field, and then select ATMEGAS88PA frahe short list remaining, assuming your
development board is based othis device.

AVR C Tutorial (draft- wip).docx Page4 of 56 Last revised:4 July 2020

A project folder with the same name as the project will & created.Eachproject folder should
contain all files associated with the project, i.e. project configuration &k, C source file(sheader
files, library files, object files, compiler and linker output files, etc, etc.

NB: Do not rename any folder o file in the project folder outside of Atmel Studio (e.g. using
Windows Explorer, File Manager etg. Doing so wil corrupt the project. If you want to rename
the project folder, orany file therein, do it inside Atmel Studio.

GCC C Static Library Project
GCC C++ Executable Project
. GCC C++ Static Library Project
@ SAM L11 Secure Solution v1.0

Create project from Arduino sketch

Name: C-lessonl-exl
Location: C:\Development\Atmel Studio\7.0

Solution name: C-lessonl-ext

—— Y
New Project l [2 |
b Recent Sort by: Default -| & 5= Search Installed Templates (Ctrl+E) P~
4 Installed
GCC C ASF Board Project C/C++ Type: C/C++
C/C++ Creates an AVR 8-bit or AVR/ARM 32-bit C

Assembler . GCC C Executable Project C/Cer project
AtmelStudio Solution

C/C++
C/C++
C/C++
C/C++ L L
e <o,
i'np. - 20,4, f
C/C++ { ’J"{"'cl'd)

- Browse...

[] Create directory for solution

[ok || Ccancel

When a new project has beenreated successfully, Atmel Studio will create a C source file named

Oi AET 8A6 xEOE A | ET EI shdwnimiow. COA I

/*
*C -lessonl -exl.c
*
* Created: 2019 -12-03 4:38:24 PM
* Author : user <-- your name here
*/

#include <avr/io.h>

int main(void)

{
/* Replace with your application code */
while (1)
{
}
}

AOAiI AxT OEh

AVR C Tutorial (draft- wip).docx Page5 of 56

Last revised:4 July 2020

The code editorint O A1l 3 OOAEI ghDBEBOGOQD OAET EEOOAA OA@OC
For example, comments are shown in greefCommentsare intended to provide information

about a program the functions comprising it and to explain the purpose of code which mayot

be obvious.Comments are ignored by the compiler.

Keywords are coloured blue. These are reserved words which form the syntax of the language.
LooEET ¢ AO OEA DPOi COAi AAT 6Ah OEAOA EO A EAUXxI
AEEO EO A AT i PEI A0 OAEOAAOEOAG OAITTET C OEA AI

system foldernamedO A G@@newhere in the Atmel Studio instaktion. This file contains, among
other things, definitions of all MCU register names found ithe ATmega88 datasheet.

I # DOI COAI Al 1 OEOCOO alef whichd 11T @ AIET O A0 A@ARIOOGRI 1/
An (@xecutable statemend is C code which, whe compiled, generates microcontroller
instructions. The full set of AVR microcontroller istructions can be found in the datasheet. Later,

xAd11 1T1TTE AO EI x OEA Ai i PEI AO OOAT O1 ABAO # A
the microcontroller can execute
%OAOU # bDOI COAI 1 06060 EAOGA 11 A AEOIaA N e gieAl A A

made-up names. A function name is distinguished from other identifier names by placingpair

of round brackets after its name, asif® AETd 8 q

If there isnodatatobénput ET OT A A£O01 AOET T h AO EI OEA6GAABAOI
be written insidle OEA AOAAEAOO8 4EA xitimaylbe nditiedE A finctirocand B OE |
Al 01T OOAOOO0T 6 A OAIWA etura &nAntedeAvBllie] if it€yer vEdrh & | 1
in this exampleit never returns.

For the time being, just take it for granted that a function consists das name followed by a pair

of matching round brackets which may, or may notgcontain a list of values to le passed into the

function. Following the round brackets,preferablyonanex 1 ET A EO Al 1 PAT ET C
iTOA OOOAT1T U AATTAA A OAOAAAG8 4EEO EO AI1T11 x
The closing brace marks the end of the funan. The C code between the opening bra¢and the

closing brace}ofafundET 1 EO AAI 1 AA OEA O&OT AGEI T Al AUoS8
I EO01 AGET 1T AT AU AT i1 POEOCGAO jI1POEITAITTUQ OiIiT A O

There cannot be any executable statements outsidef @ function. There may be compiler
AEOAAOGEOAOG AT A O AdeGuActiohdd Adiata Gekl@r&ibndiadstatbniear @ikich

OAT 1 O OEA AT i PEIAO AAT OO TTA TO 11T OA DPOI COAI
The minimal program created ly Atmel Studio for a new project contains only a main() function.

Inside this £0T AOET T h OE A OAwhiéhGs a £ cobstriieEwhiBhorepéals layBup of
statements placed betweerthe matching braces. In the above program, there are no statements
between the bracesThat iswheremuchl £ UT OO0 OAPDPI EAABET 1T AT AAd x
.1 OA OEAO OEA EAUx1T OA OxEEI Ao EO Eiil AAEAOGAI U
this case containingthe number 1. Inside the brackets, there can be any arithntie expression.

The statement(s) inside the loop body, i.e. between the cyrbraces, will be executed repeatedly

so long as the expression inside the round bracketsas a nonzero value. In our case, the
expression has a constant value 1, which is alway®n-zero, sothe loop will repeat forever.

All embedded microcontroller applications use this basic structure because theymust run
continuously (as long as the MCU is powered up)

AVR C Tutorial (draft- wip).docx Page6 of 56 Last revised:4 July 2020

Consolidation

Now is a good time to consolidate some of the concepts irtduced so far. Refer to the companion
documentO# AOO 2 A £A O j] addistudy Ak OllAing sections:
T CommentAl | AE AT A AlpbadedT O 1 ET A8

Compiler pre-processordirectives | #include <file> 8 | BACA

N~ o~ A oz

1
1 Function definitions8 (page7)
1 Loop consDOA OOwhge 60HA T® 18 | DACA

First program

/I +h T1Tx 1A080 xOEOA O1T i A AT AA OEAO AT AOG OI i AO
The example code to follow assumes there is a LED wired {® pin PBO such that a logic High

output state will turn the LED on

In Atmel Studio, extend the outline program so that it looks like this

[

*C -lessonl -exl.c

*

* Created: 2019 -12-03 4:38:24 PM
* Author : user <-- your name here
*/

#include <avr/io.h>

int main(void)

{
DDRB= 0b11111111; // Set up port B pins, all outputs
while (1)
{
PORTB= 1; //IPBO=1 - turnLED on
PORTB= 0; /I PBO=0 -- turn LED off
}
}

Before entering the loop, port B is set up so that all 8 pins are outp@ds 4 EA OOAOAIT AT 08
DDRB=0b11111111;

sets allAEOO ET $$2" jbHPI OO © AAOA AEOAAOQEI1T OACE

statement, where an expression, in this case a binary constant (1111 1111) is assigned to an I/O

OACEOOAORh ET OEEO AAOA ss2" 8 wiih brdadebdit dquadyO A Al

4EA OANOAI 66 OECIT j EQzEIl A®EHA G OATITAGA @ @ EEDO AINAOMIT ¢

Inside the loop, two statements have been added. The first sets bit O of register PORTB to 1 so

that pin PBO will asserta High stat (approx. +5V) thereby turning the LEDon. The second

statement clears all bits in register PORTB, so that pin PBO walserta Low state (0V) thereby

turning the LED off. The oroff sequence will repeat indefinitely.

AVR C Tutorial (draft- wip).docx Page7 of 56 Last revised:4 July 2020

Totesttheprogram, firstwe needi O A ébjedt dbde to be downloaded to th&VR board The

PDOT AAOGO 1 A&praekt@ET DEIOO® T £ AT I PEIET ¢ OEA # Ol OC
1 AT COACAd AT AAh OE éxecutdb®@IAA AA EO CAIOEAD ENl OA Al O
and executed a the target microcontroller. Sounds complicated (and it is) but it all happens like

magic with one or two mouse clicks in Atmel Studio.

&Oi i OEA T AT O AAoOh OAI AAO " OEI Ah OEAT #1711 PEI A
code z it just checksthe syntax of the source code and reports any errors. If you get an error
message, or warning, check your code for typos, etc.

When the code compiles cleanly, proceed to build it. From the menu bar, select Build, tiiBaild
Solutiond (or simply press F7Y) 4 EA 1T OOPOO xET AT x OEI O1 A OAU 0O" ¢
ready to load the object code into your AVR board and run the program.

How to load the program (object code) into the ATmega88 program memory

Plug the programming tool (AVRISP mkKI) into a USBport on the host PC if not already done
Connect the ISP ribborcable plug to the ISP header on your AMidard and power up the board.

From the Tools menu, select Device Programming. Select the target device: ATMEGAS88PA. Click
the Apply button. You shoull see a slider to set the ISP Clock rate. (If not, the problem is most

likely the USB driver is not installed properly.) Leave the ISP @ik set to 125kHz. Now click the
O2AAA6 ADOOOIT O1TAAO $AOEAA 3ECI AOOOA8 4EA 1! 6
ATmega88 MCU and display it (6 hex digits). If it fails, there could be a fault in the ISP wiring.

(2 b
AVRISP mkll (FFFFFEFFFFFE) - Device Programming L2 (S
Tool Device Interface Device signature Target Voltage
AVRISP mkll v | ATmega88PA v |ISP v ||Apply| --- |Read | - |Read| |L¥|
Interface settings Device

FoohREormation ‘Erase Chip 'l ‘ Erase now ’

Device information Flash (8 KB)
Oscillator calibration C:\Development\Atmel Studio\7.0\avrbed_test_demo\Debug\avrbed_test_demo.hex
Mermoces / Erase device before programming | Program ' } Verify ’ |
(¥ Verify Flash after programming
— v) Advanced
Lock bits
EEPROM (512 bytes)
Production file % ‘_’

¥ Verify EEPROM after programming

v | Advanced

3ATAAO O-Ai 1T OEABAA £DRT ODEAT AAEOOEA EAAAEIT C O
showing the selected object fileCheck that the correct files shown.

#1 EAE OEA 0001 COAi 6 AOOOI 18 4EA boart gMénithe OET O
download is finished, the program shoud start running.

AVR C Tutorial (draft- wip).docx Page8 of 56 Last revised:4 July 2020

7TEAO0 AT UIT O OAAe 4EA , %n$ AiT1TAAOGAA O1 o0Ton OEI
answer this question, consider how fast the LED is being turned on and off. How long does it take

to execute one iteration of the@nhiledloop? Youcan measure the loop period using an
oscilloscope on pin PBO. The LED ewif cycle is much faster than can béiscernedby the human

eye. Toslow down the flash rate, we need to insert a time delay after the LED is turned on and

again afteritistunedof.) T OEEO OEI b1 A A@Al pilwlibe used0OT £Ox AO
31 1 A06O0 xOEOA A ££EOT AOEtichoisé a nenhefor id If we waht atalfOE | A
OAATT A AAI Auh O GCEOA A £l AOCBATOAWDAv i E Gpd(BU h4 EAA
definition might look something like this:

void delay_500ms(void)

{
delay_counter = 10000; /I Adjust this number to get required delay
while (delay_counter > 0)
{
delay_counter = delay _counter - 1;
}
}

The function embodies 8O x EET A8 Fepeatedly sderEndefits a counter variable until it
becomes zero. Before entering the loop, the counter variable isitialised to a value which will

make the total execution time of the function about half a second. The initial counterlua is
determined by trial-and-A OOT 08 , A0 O OOAOO xEOE A OAI OA 1T &
AEAOAGO 1T 1A IrictodnediEte hake it The vEG@bleelay counter has not

yet beendefined anywhere. In C, variables must be deckd before being used in an expression.

The following statement declares an unsigned integer variabl&he AVR C compiler allocates

two bytes (16 bits) of data memory toan integer variable.

unsigned int delay_counter ; /[Variable , 16 - bit integer (unsigned)

This statement must be placed outside of the function delay 500ms§p that delay counter is

Al 1T AAGAA OPAOI AT AU détd med@ylfthd adablewas dediafed inside the
£O01 AGET T h OEAOAAU AOAAOEhe@nchondighfnbtivdriOfecatséthd T A Al
AT AA O1 PpOEI BCAOH T | Bnhd Bihkithe fudcioA does nothing of any use

and therefore might not generate any object codéor it! (Tricky things, code optimisers.)

Functions must be declaredr defined before being referenced elsewhere iaprogram. One way

to satisfy this requirement is to place the function definition before anyther function which
references it, i.ewhich @allsdit. In our example, we will place the code defininghe function
delay_500ms() ahead of main() in the source file. The complete prograniisgted below.

I EOT AGETT EO OAAI I A Kb itg nfudedfdlian@d By Ghe @eir ofduttl A U
brackets, as in the function definition. The bracket following a furion name distinguishes it

from variable names, etcNote that it is good programming style not to put a space between the
function name and he opening bracket. Elsewhere, space@say be inserted to improve program
readability.

AVR C Tutorial (draft- wip).docx Page9 of 56 Last revised:4 July 2020

/*
*C -lessonl -exl.c

*

* Created: 2019 -12-03 4:38:24 PM
* Author : <name>
*/

#include <avr/io.h>

unsigned int delay_counter ; /I Variable used by function delay 500ms()

void delay 500ms(void)

{
delay_counter = 10000; /I Adjust this number to get required delay
while (delay_counter > 0)
{
delay_counter = delay counter - 1;
}
}

int main(void)

{
DDRB= 0b11111111; // Setup port B pins, all outputs
while (1)
{
PORTB= 1; /IPBO=1 - turnLED on
delay_500ms();
PORTB= 0; /IPBO=0 -- turn LED off
delay_500ms();
}
}

Build this program, load the object code as before and run it. Is the LED now flashing at a
perceptible rate, or still too fast? Measure the flash rate and adjust the initial value of
delay_counter to achieve the desired flash rate, if possible. If the required delay time cannot be
achieved using dl6-bit integer, try a 32-bit integer which is defined thus:

unsi gned long delay_counter ;

Exercise 1

Your next challenge is to flash two LEDs at different ratesone flashing at 1Hz and the
other at 2Hz.The second LED is to be driven from pin PB3.

Hint: Draw a timing diagram showing the oroff states of both LEDs vesus time, over a
period of 1 secondor so. What is the smallestime interval between any change of state?
You will need a function to delay for this time interval. Write down the values that will need
to be written to the PORTB register at every change bED state.

In your solution to the foregoing exercise, you probablyvrote constant valuesinto PORTB,
changing the onroff states of one or both LEDs togetherfThis is fine for a simple task like this,
but in more complex applications where several 1/0 pis must be maipulated independently at
arbitrary times, perhaps by different functions, we need a method to manipulate one or more
register bits without affecting other bits. Thiswill be addressed ina later section, but first...

AVR C Tutorial (draft- wip).docx Pagel0 of 56 Last revised:4 July 2020

Registers, variables and constants in the C language

Yyl OEA 162 OUOOAIh -#5 OACEOOAOO AOA Oi ADPPAA(
accessed in the same manner as program variables. All MCU registers havegeBned namesz

you cannot (well alright, you can, but youEB T O1 AT ké GpQyoul dwn names for registers.

(Later, we might look at how and why you might want to do that.) Meanwhile, register names

AOA AAZET AA ET A OEAAAAOO6 ZEEI A j AOOTEI 8EQ xEE.
Register bits may bebest manipulated using binary or hexadecimal values. A binary number is
OAPOAOAT OAA ET # AU AAAEI ¢ A DPOAEE@ OmAo6 10 O
Examples of binary constants: ObO (= 0), Ob11 (= 3), Ob101 (= 5), 0b1000 (= 8), 0b111116),
0b10000000 (= 128) and 0b11111111 (=255), if unsigned.

The hexadecimal equivalents are: 0x0 (= 0), 0x3 (= 3), 0x5 (= 5), 0x8 (= 8), OxF (=15),
0x80 (= 128) and OxFF (=255), if unsigned.

INC,an8AEO OAOEAAT A EO AOCAAOAWM DOEDBGEAPAAGAO&T D
ASClicharacter is represented by an &it code).

A variable in C is created by declaring its data type and giving it a name. The data type can be
OAEAOO6 -biEhUGbeT OET 06 Al O Al ET OA CA&ept theEidtegdE UA E
are always bigger than 8 bits, typically 16 bits ircompilers for Gow-endd microcontroller s).

| OEAO ATiTi11T1T AAOGA OWELNO EAGA CAIDI @Qd AaO@ERY A 006
numbers having an integer and fractional parand a huge range of magnitude

Examples:
char output_bits; Definean8AEO OAOEAAT A T AT AA O1 60ODC
char input_bits; Definean8AEO OAOEAAT A 1T Ai AA OET bOC

A variable declaration, as above, is &impled C statement. The semcolon at the end ofeach

OEi PI A # OOAOAT AT O EO AOOAT OEAI 8 EQThe&oimpiled OEA
ECIT OAO OxEEOA rewlhdsAblank lifeg fyindemshA ADAB (1T xAOAON
OPAAAOG dndistouldife) used to improve source codeadability.

Variable names may be any length from 1 to 40 characters or mongsing a mix oflower-case

letters, upper-case letters,numeric digits (0 to 9) and underscores. It is conventional to use

mostly lower-AAOA 1T AOOAOO ET Ol OdsiEd dppckcase Bife® arddd A T
underscores to separate words within aname, e..0 Aedp2 AAAET co8 $1 11 0 OOZ
or underscore for the initial character.

T o~ o~ N

$A0A OUDPAO | Ay addiidg adiReOkdywerdhi flort of the type specifie. Common

NOAT EAEAOO AOA OOE QATAA sOWheaTd aodtifier isfued bn ad idtegerO O 6
OUPAh OEA EAUxI OA OET 06 EO Ei Pl EAA AT A 1T AU AA
omitthe OOECT AAd NOAIT E /EE A @efault i$ nbt sténdardiEéd o if@x M&tdre) 6s8 O E A
aqualifierzOOECT AA6 T DA AET G Q) AAEAMO 6 8

Examples:
int ival ; DefineasignedET OACAO OAOEAAT A 1T Al AA
unsigned uval ; DefineanunsignedET OACAO TAI AA OOOAI
short iword ; Define signedOET OO ET OACAO jpoe AEOQ 1

AVR C Tutorial (draft- wip).docx Pagell of 56 Last revised:4 July 2020

unsigned short word16; $AZET A O1 OECT AA OET O@ordddoOACAO
long ival32 ; $AEET A OECI AA 111 CIEAIOACAO j oc¢
unsigned long uval32 ; $AZET A O1 OECT AA 111 ¢Cc ETOACAO j

Note that the size of arunqualified OET 06 ©.4 @&, AvAl] aBove)lepends on the compiler
being used.You can find out the size from the compiler manual, but it isad practiceto make

your code dependent on a particular compiler. Try to make youh i AA ObPT OOAAIT Ad h
reliably on any platform.

Now that we know how to create variables in memorylet® look at how values can be assigned

to variables and how values can be copied from one variable to anoth@hese operations are

done with aOEIl D1 A # OOAOAI AT &6 AAIT 1 AThe Qilanguéok Qge£tel 1 Al
OANOAI 66 OECT AIEQ@ QAIOBHOEAROIAGKDE GHOIOA AT AOOECIT | /
ANOGAOCEI T xEAOA OEA AgGPOAOGOEIT O 11 AEOGEAIGR OEAA
Inch OEA AOOECI i AT O OOAOGAT AT O EO OOAA O1 AOAI OA
sign and copy that value into a variable on the left side.

In the following example, the expression on the RHS of tleperator (=) is simply a numeric

constant. The variable on the LHS will be assigned the value of the constant (15).

bits = 15 I OOECT OAI 6A pu OI OAOEAAI A &6A
I +h T1x 1A080 i1 AEAU OEA OAI OA 1T £#/ OAEOOGE8)T
bits = bits + 10 ; Add value 10 to variabled AE OO b

#1 AAOI Uh OEEO OOAOAI AT O EO Al CAAOAEA TriglageAi OAc
where the RHSexpressionis evaluated: 15 + 10 = 25 and the value (25) is assigned back to the

variable. ©,A £#0AO0 AQAAOOEIT 1T 1wl h&the vad®ASOAT AT Oh OAEOOG
How to manipulate individual bits in a register or variable

To change the &te of one bit in a registeror variable, without affecting any other bits, a
OAAET ENOGA AAI 1T AA OAEO 1 AOCEET C6 Eadout. MmBAdlue ®OAAS
OEAT OI AGEAAG O1T OETCIA 100 OEA AEO OEAO 1T AAA
If asingle btEO O1 AA OAO (ECE jpqh OEA OAEOI AOES EC
OACEOOAO jT O OAOEAATI Aq OAI OA EA OREGAEBORU/ 2
The result is then written back to the register or variable.

()]
Qu

Example: Set bit 7 in a byte variable, output_bits.
output_bits = output_bits | 0b10000000; // only bit 7 is set High

Conversely, if we want to clear a single bit in aaviable, i.e. set it to zero (0), the bitmask has all
bits High (1) except for thebit position to be cleared, which is zero (0).

47 A1 AAO A OETCI A AEOR OEA OA@Eithea Bversdbitnask A OE A,
OOET ¢ OEA Opelaldn H®rdsultis. themdwriiten back, as before.
Example: Clear (zero) bit 5 ira byte variable, output_bits.

output_bits = output_bits & 0b11011111; // only bit5is zeroed

AVR C Tutorial (draft- wip).docx Pagel2 of 56 Last revised:4 July 2020

It is more usual to always express bitmasks with all bits zero (0) except tHat(s) that need to
be modified. So, when a bitmask is used to clear selected bjt(we need to use the complement
i A1 01 ETi1x1 AO OEA OET OAOOGA6qQq T £#/ OEA AEOI AOGE

output_bits = output_bits & ~ 0b0010000; // only bit5is zeroed
Yyl OEA AAT OA OOAOAI AT Oh OEA sQrfixdd toBH® Bitmask. THs1 Al A
I DAOAOT O OA&AI EPO6 Alil AEOO ET OEA WUBBAOAAEOKA
complementd | BAntugt Aot be confusedwithE A O" T 1T 1 AAT | 1 ToQnhiBhAsl q . /
anexclamation mark (I). TR O" 1 T 1 Adefator.will Bedxplained in a later section dealing

xEOE OAT 1 AEOQGEI T Al A@DOAOGOEI 1T 0068
3AA | DPDAT AEIGAOO T A BABATOAA - AT OA1T 6 A1 O A Al T DI/
Exercises
1. Write a C statement to set bit O ofegister DDRD to 1 withoutaffecting other bits.
Write a C statement to set both bit 0 and bit 1 of register PORTB to 1.
Write a C statement taclear bit O of register PORTB
Write a C statement taclear both bit 2 and bit 3of register PORTB

Write a C statement toclear bit 7 and set bit 6 of PORTB at the same time.

o ok~ w N

Write a C statement toinvert (flip) only bit 3 of register DDRC.

i (ETOd)1 OAOOGECAOA 2GE A PAREGACE @B A0 %@ Al OOE OA
Using the Ghift Left8operator (<<) to create a bitmask

4EA OOEEAZEO 1 AZE0O8 1T PAOAOI O 11 0O6A0 AEOO ET Al EI
number of bit places to the left. The following assignment statement shifts the constahieft by

Oi A8 AEO ®IAOALEAATOROOD 6 61 A OAOEAAT A OiI 6OAEOD
outbits = 1 << nb;

The RH expression X << nb) evaluates to a number whichwill have one bit set high (1) and all

other bits cleared (0). The bit position containing thesingleEE CE A E Onb&® OKLkIT AAR
want to make a constant with bit 4 set high, we use the expressioh < 4). If we want to make

a constant with bit 7 set high, we use the expression (<< 7). And so on.

This technique is commonly used toepresentA OAEOI AOES ET x EtmghBo,1 11 U
instead of writing a binary constant in the form (00010000, we can write (L <<4) which shows

more clearly which bit is set high, i.e. bit 4. Note that this works for bit zero as well.

Example: Set bit O in a byte variable, output_bits.

output _bits = output_bits | (1 << 0); // bit 0 is set High

Example: Set bit 7 in register PORTB.
PORTB =PORTB | (1 << 7); I/ bit 7 is set High
Example: Clear bit 5 in a byte variable, output_bits.

output_bits = output_bits & ~(1<<5); I/ bit5is cl eared

AVR C Tutorial (draft- wip).docx Pagel3 of 56 Last revised:4 July 2020

Using a bitmask to test the value of a single bit of a register or variable

To determine if agiven bit within a register or variable is High (1) or Low (0), a bitmask is
defined with the bit position in question set to 1 and all othebits cleared.A Boolean expression
is obtained by AN E &llGhe register (or variable) bits with the bitmask. For example,to

determine the value of bit 3 inthe input register ofport D,PINDOEA A@DPOAOOEI T EOS
(PIND & (1 << 3))
Using the OAEOXxEOA | . $6a T DAOAEO® jEQQhOACEOOAO 0) . $

corresponding bits in the bitmask, so that all bits of the result except bi8 will be zero. Bit3 of
the result will be 1 only if bit-3 of register PIND is also 1; otherwis bit-3 of the result will be
zero. (Imagine bit3 of PIND and bit3 of the bitmask are fed into a znput AND gate Both inputs
must be High to get a Higltevel at the output of the gate.

InC” T 11 AAT A@POAOOEIT trudd Ataded ® A OBued| E A EQOABEN OAT O/
non-zerovaluej ET A1 OAET C 1T AC#ISeE OROOARDBADGA D elhedha) UA C
Boolean expressiorcan betested usingan@6 OOAOAT AT Oh AO A 111 x0g

if (PIND & (1 << 3)) button_state = 1; /l pin PD3is High (1)

if ((PIND & (1 << 3)) ==0) button_state =0; // pin PD3 is Low (0)
AEA OOAOAT AT O EiT AAEAOGATI U A 111 xET ¢ OEA OEZ&S

only if the condition is true (non-zero). Note in this casethat, if true, the value of the Boolean
expresgon is not 1; itis 0000 1000 (binary), i.e. b#3 is 1,s0 the following statement would fail
to produce the intended outcome

if ((PIND & (1 << 3)) ==1) button_state = 1; /[<I>WRONG <!>
We will take a morein-AADOE 11 1T E AO OEtdvaisAsdms ®@ falrsécifon. O Al
Meanwhile, the above description should be enough for you to have a go at the next exergise

Lesson 1,Exercise 2

Extend the program you created in Exercise 1 so that another LEDI AO6 O OAU , %$)
illuminated if push-button [A] is pressed; otherwise the LED will be OEH heButton [A] is
connected to port O pin PD2. Operation of the push-button must not disrupt the normal

flashing cycle of the two other LEDand vice-versa

Note: The 4 puskbuttons onthe AVRB%$ EAOA O! AOEOA 1 x6 ET DOOC
pin is driven Low (0) while a button is pressed. Somehow, the input pin must be driven

High while the button is released. The AVBED has no pulup resistors wired to the

button inputs. You might need taefresh your knowledge of GPIO pin operatioycovered

in Lesson 1 and/or consult the ATmega88 datasheet.

AVR C Tutorial (draft- wip).docx Pagel4 of 56 Last revised:4 July 2020

Lesson 21 Arithmetic and Logic Operations in C

This lessonaims to show how to write C code toperform integer arithmetic and bitwise logic
operations, including conversion ofnumeric data to printable characters in binary, hexadecimal

and decimal number bases.

47 OAA OEA OAOOI OO0 T &£/ OEAOA T DA OMBEENada@ine by A1 I
16 character LCD module interfaced tthe ATmega88 MCU as showm Fig. 2.1below. If you

are usinganother hardware platform such asthe AVRBED. AT 1T 1 O -i! ©Olibdfedd, redes
to the relevant documentation to connectin LCD module.

ATmega88PA
PC6 |— LCD
PC5 |—————0 PC5 MODULE

pC4 |——10 PC4,

PORTC pe3 b——@i Pc3/ADC3 < (POT)
PC2 > RS
PC1 R/W
PCO >{E
PB7 >{ DB7
PB6 >{ DB6
PB5 >{ DB5
PB4 > DB4

PORTB g3 >{ DB3
PB2 >{ DB2
PB1 >{ DB1
PBO >{ DBO

PD7 p—1@ PD7 ---> (LED8)
PD6 |—1 PD6/OCOA (PWM)

1 BUTTON D
0 BUTTON C
-0l BUTTON B
{5 BUTTON A

PD5

PD4
PORTD pps

PD2

ANANA

PD1 > PD1/TXD
PDO € 8 PDO/RXD } UART

_I__@ GND

Fig 2.1 AVR-BED Schematic (simplified) showing LCD signal connections

3ETAA OEEO 1 A0OI 1T EO-TAGAIA TANAMN AA AMEADE GOE AA OCF
wiluseaOAT AA 1 EAOAOUG AT T OAETET C A OGEGAR 1 £ALAIOCA
compiled set of functions designedto bdiAT OBPT OAOAA ET O Al ADPDPI EAAC
"##060 x1 Ol Ah AT AA 1 EAOAOEAO AOAA 1T AEAAO Al AA EE
However, if you use library functions in a program, the C compiler needs to know various
properties of those functions, forexampleDEAEO 1T Ai AOGh 1 01 AARO AT A OUD.
and the return data type for functions which return a value). 4 EA ®OT O©AOOEAO6 | ¢
AAAT AOAA ET A EAAAAO ZEEI A j xEOE A@OAT OET 1T OS8E
header file mustbe #included in the application program, in all source files which access library
functions.

The AVR" %$Peripheral Function LEAOAOUOG E O liAavrassd Ao 1A A AOEA OA
EAAAAO AEEITIB avbeB EAS ART 101 ¢ 1 OWRABED 0dde Ebfay @rovidéd E A
functions to support the LCD module, as follows

AVR C Tutorial (draft- wip).docx Pagel5 of 56 Last revised:4 July 2020

/*
* |nitialise the LCD controller (HD44780)...
* LCD mode is set to: 2 lines, char 5x8 dots, cursor on

*/
extern void lcd_initialise (void);
/*
* Qutput a command byte to the LCD ¢ ontroller.

* Refer to command definitions (macros).
*
* Entry arg: cm d = LCD command code (byte)
*/
extern void lcd_command BYTEcmd);

/*
* Display a single ASCII character.
* Before calling this function, set cursor position using
* led_cur sor_posn(row, col)
* where row is O (top line) or 1 (bottom line), colis 0..15
* The cursor position will be advanced one place to the right on exit.
*
* Entry arg: ¢ = ASCII character code (printable)
*/
extern void lcd_write_char (char c);

/*
* Function to display a NUL - terminated string.
* Before calling this function, set cursor position using
* lcd_cursor_posn(row, col)
* where row is O (top line) or 1 (bottom line), colis 0..15
* The cursor position will be advanced N places to th e right on exit,

*where N = number of characters in the input string (not incl. NUL terminator).
*

* Entry arg: str = address of string (constant or variable)

* Usage examples: lcd_print_string("Hello, world."); // string constant

* lcd_print_string(buff); // where buff is an array of chars

*/
extern void lcd_print_string (char *str);
4EA EAAAAO £EI A Al 61 Ai 1T OAET O O1i A i o ,
OEA OEI A AAEIimetheyivdkkOBEOR EAGIOA GAEOAGGO8 4EA | AAOT O A
/I Macro to set cursor position to a given row and column,

/l where row is O (top line) or 1 (bottom line), colis 0..15
#define Icd_cursor_posn (row, col) lcd_command0x80 + (row * 0x40) + col)

/I Alias for lcd_initialise(), for legacy AVR - Pad library compatibility
#define initialise_LCD () lcd_initialise 0

~

, AO8O0 T1T x AOAAOA A POI EAA®AVRBEDIbiaiyAl 3 O0OOAET xE
Lesson 2, Exercise 1
30A00 ! Oi Al 3 O00CAEDI AAKOD OAE DABRMA OO 1A AdsSobRAO O #A
A @ indnuch the same way as you did in Lesson Delete everything from the source file,

main.c, and enter the following program instead. The source code for this program may be
found in a file accompaying this tutorial.

The program shows how to convert a number (integer variable) to a string of printable digits
using a standard library function,itoa(), for displaying on the LCDscreen The AVR GCC
toolchain provides many other handylibrary function s, e.g. delay_mg).

AVR C Tutorial (draft- wip).docx Pagel6 of 56 Last revised:4 July 2020

/**

* Pro ject: C_lesson2_ex1
* File: main.c
* Author: <your name> <date created>

*

* This program demonstrates how to use the AVR

* to initialize the LCD module, send it commands, and display text on it.

*

#include <avr/io.h>

#include <stdlib.h> /I Definitions for standard library

#include <string.h> /I Definitions for string library

#include "lib_avrbed.h" /I DefRs for AVR -BED library (must precede delay.h)
#include <util/delay.h> /I Def Rsfordel ay library

/] Text strings to display

char AppTitle [] = "Lesson?2 Ex.1 "

char Blanks [] =" " ; /[array of 16 spaces
int main(void)

{

/I Allocate an array of char's, i.e. a string variable...

char strBuffer [20]; /I more than enough space for 16 chars

int iCount ; /I'local integer variable

initialise_LCD(); /I Initialize 1/0 ports and LCD module
lcd_command(LCD_CLR); /' Send 1 - byte command to clear LCD
DDRC= DDRC& 0x07; /I Configure pins PC3..PC7 as inputs
lcd_cursor_posn(0, 0); /I Set LCD cursor to upper LHS

lcd_print_string(AppTitle); /I string to show on top line
Icd_cursor_posn(1, 0);

lcd_print_string("Your text here.."); /l's tring to show on bottom line
/I Wait a few seconds so that we can read the text before proceeding.
_delay_ms(3000); /I Delay function built into AVR GCC
lcd_cursor_posn(1, 0);

lcd_print_string(Blanks); /I Clear bottom lin e

iCount = 10; //initial value for countd own

while (iCount != 0)

{
/I convert number (iCount) to string of decimal digits in strBuffer
itoa (iCount, strBuffer , 10);

/I Display buffer contents on the bottom line (row =1l,col=6)
lcd_cursor_posn(1, 6);
lcd_print_string(strBuffer);

/I Wait a second before next value is displayed
_delay_ms(1000);

lcd_cursor_posn(1, 0);

lcd_print_string(Blanks); // Clear bottom line

iCount = iCount - 1; //decrementthe counter (alt. iCount -)

}

lcd_cursor_posn(1, 6);
Icd_print_string("BANG!™);

AVR

C Tutorial (draft- wip).docx Pagel7 of 56 Last revised:4 July 2020

- BED function library (lib_avrbed.a)

Before we can build this project, the AVEBED library files must be addedUsing Windows
Explorer (File Manager), opy OEA Ox1 EAEAAOADABAG AT A Ol EA AO
folder you created. The foldecontentsOET O1 A 1T T E T EEA OEEOS

@Lvl » Computer » LocalDisk (C:) » Development » AtmelStudio » 7.0 » C_lesson2_ed »

Organize v Include in library v Share with » Burn New folder
- Atmel Studio $ Name T",vpe
a 7.0 ;
. . RYS File folder
avrbed_library_build o
Debug File folder
avrbed_test_demo = i
. E C_lesson2_exl.atsIn ATMEL Studio 7.0 Solution File
AVR-Pad-Library-Test — : :
s |2 C_lesson2_exl.componentinfo.xml XML Document
. AVR-Pad-Poker-Machine X ~ o)
C_lesson2_exl.cproj ATMEL Studio 7.0 C Project
AVR-voltmeter 5
|_| lib_avrbed.a A File
AVR-waveform-generator : R
: | lib_avrbed.h C header
bcd-to-binary-demo) L
| main.c C File
4 C_lesson2_exl
Vs
, Debug

T 101 Al 30O6AET h Al EAE OEA OAA 0311 OOEIi-dick %@bl
T OEA DPOI EAARDc O& @ ptdver jyod sam&dAtand select Add> Existing Item.

Navigate toyour project folder and choosethe file: 01 EA . AOOA A A 8 E ndw appede O AE
ET OEA 3711 00EIT %@bi i OA (Sedsbreefshot) AEOAAOI U AAT OA

ThenrightclicE T 1 O, ERADACOKADAO O! AA | -dAndnkrn Apopdpddxi OE /

wil ADPPAAO8 #1 EAE Ofal@date @Ayour ftofe@ Aoldér Adiochoose the file:
Ol EA A &G AEAMESTA® fde shéuld now appear in the Solution Explorer parén the

)
|

LibraiAO OAAQET T h AlIT1TC xEOE OEA -9bddAT AAOA 1 EAOAO
Solution Explorer v @ X
@ o-F@| F =
Search Solution Explorer (Ctrl+;) po
ﬂ Solution 'C_lesson2_ex1' (1 project)
4 C_lesson2_ex1

=d| Dependencies
=d| Output Files
4 _; Libraries
43 lib_avrbed.a
3 libm
h lib_avrbed.h
¢ main.c

Now the program can be built downloaded to your board andexecutedin the usualway.
(See page 8 in Lesson 1lif)you get a compilation error, check your code for yos.

Next,I A éx@nine the program code to see how it works.

AVR C Tutorial (draft- wip).docx Pagel8 of 56 Last revised:4 July 2020

At the top of the program, there are several #include directives to include required header files.
Thesefiles comprisedefinitions and declarations of functionscontained in various library files.

11 AOGO TTA T £ GEAOGA 1 E Aing oaE é the AVR BCOhd@ifai] TAeA O A 6
onyOT IOIOAT AAOAS6 1 EAOAOU EO OI EA AOOAAAS xEEAE x
The statementbelow creates an array of characters and initialises it with @ OOE 1 C 8

char AppTitle [] = "AVR BED with LCD" ;

The next two statements define an array of 20 chars, strBuffer, and an integer variable, iCadun
4AEAOA AOA OAdkihbledbkcaudd thefk aré defined inside a function (main) and their
scope istherefore restricted to use within that function.

char strBuffer [20]; /l more than enough space for 16 chars
int iCount ; /l'local integer variable

The array will be used to store printable digits, i.e. ASCIl characters, corresponding toeth
numeric value of iCount. The statements below are function calls. The first function sets up I/O

port pins used by the LCD module and initialises the LCD contretldevice. The second function,
lcd_command(), writes a command byte to the LCD controllefhe argument LCD_CLR is a
OOUi ATT EA Al 1 OOAT 66 xEEAE EO OEiIiBPIU A TAI A CE

initialise_LCD(); /I Initialize 1/0 ports and LCD mo dule
lcd_command(LCD_CLR); // Send 1 - byte command to clear LCD
There areseveral £ OEAOA OOUI AT 1 EA Ai 1 OOAT 6066 AAEET AA
AO OET x1T AAITT x8
/I LCD Controller Command bytes
I
#define LCD_FS_8BIT_2LINES 0b00 111000 // DL =1 (8 hbits), N=1(2lines), F=0
#define LCD_OFF 0b00001000 /1 D=0 (off), C=0 (cursor off), B=0 (no blink)
#define LCD_CLR 0b00000001 /I Clears entire display
#define LCD_HOME 0b00000010 /I Return cursor to home posn, DDRAM addr = 0
#define LCD_EM_INC 0b00000110 /I Increment cursor position, no dispaly shift
#define LCD_ON 0b00001110 /I D=1 (on), C=1 (cursor on), B=0 (no blink)
#define LCD_CURSOR_OFF 0b00001100 // Display ON, cursor OFF (hidden)
#define LCD_DDRAM_1ST _LINE 0b10000000 // Char positions on 1st lin e: 0x00 to OxOF

#define LCD_DDRAM_2ND_LINE 0b11000000 // Char positions on 2nd line: 0x40 to Ox4F
#define LCD _CGRAM_SET 0b01000000 // Set CGRAM address

The symbol LCD_CLR is definegthe value 0b00000001, or simply 1. When a command byte of

vaulA p EO OAT O O1 OEA ,#$ AiT1 00111 AOh OEA AEODI
lcd_command(1); /l Send command =1 to clear LCD 8 e

The purpose behind using symbolic constants instead of raw numbers is to improve code

readability without needing a comment The number 1 by itself is quite meaninglessn this

context. Using LCD_CLiRstead makes itmore obvious that this command cleas the display.

Another advantage of using symbolic constants that it is lesslikely to make an error by writing
the wrong numeric value. Further, if there are several instances of a constant used for a
particular purpose, and its value needs to be changesl/erywhere, only the symbol definition
needs to be changed and it is guaranteed thavery instance of tle constant will bechanged
4EA T A0 OOAOAI AT O ET OEA DPOI COAIi EOS

DDRC= DDRC& 0x07; /I Configure pins PC3..PC7 as inputs

AVR C Tutorial (draft- wip).docx Pagel9 of 56 Last revised:4 July 2020

The register DDRC is modified so that 1/0 pins PC3 thru PC7 are configured as inputs, while
leaving pins PCO, PC1 andd2 unchanged. This is done because the function initialiSeCL)
configures pins PCO, PC1 and PC2 as outputs, but it is not known hovs thunction configures
the other 5 pins of Port C If our application needs to use any of the pins PC3 thru ®CGhen the
program must configure them after the call to initialise_LCD).
Examinehenext&£l 0O 1 ET A0 1T £ OEA POI COAI 8

Icd_cursor_posn(0, 0); /I Set LCD cursor to upper LHS

lcd_print_string(AppTitle); /I string to show on top line

lcd_cursor _posn(1, 0);
lcd_print_string("Your text here.."); /I string to show on bottom line

The first statement is a function call to set the LCD cursor position to row 0, column 0O, i.e. first

character position on the top line (row 0). The second statemertdisplays the text storedin the

array AppTitle, i.ethe string 0! 6"2%$ x EOQOE the §uls@ is mdveti@ofthe bottom line

j Ol x pq AT A OEA OOOEI ¢ 091 00 OA ad herhiidaBydd E O

should replace this string with one of your own choice, up to 16 characters

The programthen delays for a fixed time, e. 3 seconds (3,000ms) to allow the user to view the

text on the display. The function _delay_ms() is intrinsid.€. built in) to the AVR GCC compiler.

Touse this£EOT AOET T h OEA EAAAAO ZEI A OAAI AUBEG j ET (
_delay_ms(3000); /l Delay for 3 seconds (3000ms)

After the delay time expires, the program clears the bottom line (row 1) of the display by writing

a string of 16 spaes (blanks), then the variable iCount iassigned the value 10

The program then entersA Ox EE1 Ad 1 rede@sdvhild the corditiohdD expression
(iCount != 0 is TRUEThe relational operator'=1 AAT O O1 | OrhefAvAri@bleliCodi i 8
decremented on each iteration of the loop, so after 10 iterations, the condition (iCount != il

be FALSE and the loopxits.

2AEAO GTA GE A2 AOEA O AhgA Bfor explan@iar ob finction arguments andoage
13 for detailson O E A O kodp Eohshut.
)T OEAA OEA OxEEI A6 111 pbph OEAOA EO A AOT AE 1T &
as it counts down from 10 to 1. The conversion from integaio ASClIstring (printable digits) is
done byastandard library function, itoa(), which takes3 arguments.The statement which calls
OEA &EO1T AGET1T 11TTEO I EEA OEEOS
itoa (iCount, strBuffer , 10);
8 xEAOA OEA AOCOitelyér © bercanvetidd GstrBmf@r isitie Aame dhe array
into which the ASCIIdigits are to be written, and the last argument, 10, is the number base for

the conversion-- in this case decimal. If we wardd to display iCount as a hexdecimalnumber,
we would usethe value 16 for this arg. For a binary conversion, 2, and so on.

Note that gandard library functions appear in italics in the Atmel Studio editor. Teeedetailed
usageinformation abouta standard library function,just right-click on its name in the editor.

On each iteration of the loop, after the display is updated, a delay of 1 second (1000ns) i
imposed, so that the courtdown interval is 1 second. On exit from the loop, the program displays
OEA OA@dO O"!'.' Ao Tthendbdph , #$ AT OO 1T 1 ETA

AVR C Tutorial (draft- wip).docx Page20 of 56 Last revised:4 July 2020

Exercise 2

(a) Modify the program so thatthe variable iCount counts upindefinitely, starting at zero.
(b) Caunt up, starting at 32,750. Notice what happens when the count reaches 32,768 and
explain your observation.

Tip: Instead of creating a New Project for eacprogram variant in the lesson, copy the source
AT AA £O0T 1T OiI AET 8A6 Al ANobRad® Savetde file In QdtePdd++A T A £
AO O, AOGOiTc¢,. wgnn_ I AET8A6 j xEAOA nn EO OEA
program in Atmel Studio tobuild a newapplication. To recover an old program to rbuild,
simply copy the source coddrom the fileand paD A E O E TiDAtmelStudicc T 8 A 6

Whenyourunyour DOT COAi h T AOAOOGA OEAO xEAT @BvA AT DRAO
decimal place to the right EAO6 O AAAAOOA OEA 1 061 AAO EAO COIl x
of course. The readout would looketter if the digits were right-justified, i.e. the least significant
AECEO j,3%Qq Al xAUuO 1T AAOPEAA OEA OAI rdeedidlehrAA8 4
AAT 6O OAT 1T AEOEIT T Alif6 AGAAOAERT ®&800ET ¢ OEA O
Conditional Execution zOE AEGOBOOA QAT AT O
111 AOO OEA 1100 OOEOEAI 1 &£ POI COAI O ET OT1 OA «
decisions based on the value of a variahler comparison of a variable with another variable, or
constant, or whatever. In C, such decisions are idd OOET ¢ AT OE&A6 OOAOAI A
4EA OEI DI AOGO I O 1 &£ OEAS OOAOAI AT O EOS
if (condition) statement ;
8 x E doadlion is a Boolean (logical) expression anstatement is any C statement
&1 O AgAi Pl Ah 1 AO8O OAU xA xAT O QlnddihiOéssar A OA
pnth AOOECT OAI OA x O1 AT 1T OEAO OAOEAAI Anh bl AAA
if (ival < 10) pl ace=17;
The expression in brackets(ival < 10) is called aconditional expression, also a Boolean
ADOAOGOET T h AAAAOOARUED HES®SOAGA & hOTOEME OBEAQ AGAT
OAPOAOAT OAA AU UAOI | mq Ahoh-zefoadus HénceEalcondifoBaOA OA
ADOAOGOGET T AT AOT 60 zithrhybe Hdimpla ariaAle ok tohsak.OE OT 1
if(flag) alpha=0 ;
In the above statement, if the variabldlag is non-zero, i.eO 4 2 5 thed the variablealpha will
be set to 0But what if flag is zero, i.,eO&! ,e3 WOEAOAB O 11T OA OEAT T1TA «x
where the conditional expression is false. In the above examglassuming alpha must be set to
11 if the flag is false (0), we could write:

if (flag) alpha=0 ;
if (flag= =0) alpha= -1,

Or, we could write:

alpha= -1;
if (flag) alpha= 0; //alpha will remain = -lifflagis O

But C provides a more elegant methodOE A OA 1T GERaminedOIERAO@A S 1 1 xET ¢ AT A

if (flag) alpha=0 ;
else alpha= -1,

AVR C Tutorial (draft- wip).docx Page21 of 56 Last revised:4 July 2020

The OOAOAT AT O AZOAO OEA EAUxT OA OAl OAay)iz falbel AA
i.e. ifflag is zero. Note the semicolons at the end of each clausthese are mandatory. Although
some C purists might groan, the whole construct may be writtennoa single line, thus:

if (flag) alpha=0 ; else alpha= -1,
yO EO AOOOT I Aou O1 AAEET A Oxi OUI ATTEA ATTOC
expressions. Tiese are often predefined in a library header flh A8 C8 O1I EA_ AOOAAA
Refernow O1T GEA OO 2 A £A O Ahga B, for flktheddetails bn Boolean comparison
AGPOAOOET T ON PACA puv A O !B Ao GE AENDINA 10K
DAOOEAOI AOg OCOAAOCAO OEAT 6h O ACANOERAT Oho®CAA,
" AOOET C AAAE OF 1060 POIiCOAIIEIC AEAI T AT CAR EAC
cursor position depending on the value of the variable E#1 OT O8

if (iCount<10) lcd cursor_posn(l, 8) ;

else lcd_cursor_posn(l, 7) ;
Notice that the statement following the conditional expression (iCount < 10) is a call to the
function lcd_cursor_posn(). The row (arg #1) is 1 in both cases, i.e. bottom rokine column (arg
#2) varies depending on iCountThis is by no means the only solution. Weould create another
variable, column, and set it to the place where the printout should start.

if (iCount<10) column=8 ;
else column=7;

lcd_cursor_posn(1,¢ olumn); // columnis 7 or 8 depending on iCount

But the foregoing solutions will only work while iCount is less than 100 We need a more
generalised solution which will work for values of iCountup t®850nmt j v AAAEI Al DI A
your challenge to canplete thenextexercissh DAOO | AQ8

Exercise 2 (c)

Arrange the displayed number(iCount) so that the least significant digit always occupies
OEA OAI A bl AA AS8)pn the Boito lin@ ATbisisAd pte@it the number from
moving one place to theright every time its value reaches gower of 10.Test the program
using different starting values, in particular: 95, 995 and 9995.
Also, see if you can hide the cursor (underscore) using the function lcd_command().
[Hint: See thdist of LCD command®n page 18.]

Binary to Hexadecimal C onversion

The next example progranmshows how to convert a 16bit unsigned integer (binary number) to
hexadecimal format to be output as 4 hex digits. Recall that a hex digit is represented by 4 bits,
so thatthe 16 digit values from 0 to15 (= F can be encodedn binary.

To convert a 16bit number to hex, all that needs to be done is to separate the 16 bits into 4
OPAAEAOOSO 1 A laast dighificént digih @ BiB) cahbd isolated by masking off the
remaining 12 bits. The next sigificant digit is obtained by shifting the orighal 16-bit number
right 4 placesbefore masking off the12 unwanted bits again. The process is repeated until all 4
digits have been isolated and stored in an array of 4 byteBhe arrayis then written to the display
as 4 hex ASCII digits, ireverse order, i.e.hexDigit[3] down to hexDigit[0] (= LSD)

AVR C Tutorial (draft- wip).docx Page22 of 56 Last revised:4 July 2020

/**
* Project: C_lesson2_ex3 a | Lesson 2, Exercise 3 a
* File: main.c
* Author: <your name> <date created>
*

* This progra m demonstrates binary -to - hex conversion for numeric display on the LCD.
*/

#include <avr/io.h>

#include <stdlib.h>

#include <string.h>

#include "lib_avrbed.h"

#include <util/delay.h>

/] Text strings to display
char AppTitle [] = "Lesson2 Ex.3 a";
char Blanks[] =" " ; /[array of 16 spaces

int main(void)

{

unsigned ival ; /l'local integer variable (unsigned!)
int place ; /I digit place, index (0 = LSD)

int column;

char hexDigit ;

initialise_LC D0); /I Initialize I/O ports and LCD module
lcd_command LCD_CURSOR_QFF // Cursor OFF, display ON
lcd_cursor_posn (0, 0); /I Set LCD cursor to upper LHS
lcd_print_string (AppTitle); /l Show title on top line

ival = 1023; /] <<<<<<<<<<c<<<<<<< Set integer value to display here
place = 0; /I start with digit[0] (LSD)

while (place < 4) /I process 4 hex digits

{
hexDigit = ival & Ox000F; / Keep lower 4 bits, others =0
column = 10 - place ; [/l writing Right to Left
lcd_cursor_posn (1, column);

if (hexDigit < 10) lcd_write_char (‘0" + hexDigit); /I hexDigit <=9
else lcd_write_char (‘A" + hexDigit - 10); /I hexDigit >= 10, i.e. A..F

ival = ival >> 4; /I Shift next 4 bits into lower 4 bits
place ++; /I next significant digit

The only newthing introduced here isthe function: lcd_write_char(). The argument of this
function is an AEII character codelts value determines what iswritten on the display.

I OA OEAO A AAAEI Al AECEO AT AI T OGAA AU OET CI
digit, which is 0x39 (= 57 decimal) -- not the same as the digit value (9 in this c&y. So, instead

I £/ xOEQOET ¢ Onéh xA AT OI A xOEOA ndon jHmakg AAA
more sense of this, have a look at an ASCII code chart.

Lesson 2,Exercise 3 (b)

Modify the program listed aboveto display the value of ivalin decimal, without using the
function itoa(). The output format shall be 5 digits with leading zeros (if any) shown.
Preferably, organisethe program into amain function and a subfunction which does the
conversion from integer to a string of decimal digs stored in an array.

AVR C Tutorial (draft- wip).docx Page23 of 56 Last revised:4 July 2020

Tip: 4EA OAI AET AAO T £ A1 ET OACAO AEOEOEIT I
find the remainder of a division by 10, use the expression (ival % 10Note also that the
result (quotient) of an integer division yields only the integer part; the fractional partis
lost and the result is truncated to the nearest lower integer i.e. not rounded

Examples: 3/5 is0; 4/5is 0; 99/100is 0; 12/5 is2; 16/3 is5; 199/100 is 1.

Program e xample with a simple user interface :

A program is required to convert degreesCelcius toFahrenheit over the rangel 10 to +250 °C.
Both valuesare to be displayed together on the LCDtop line. Four push-buttons will be usedto
selectthe displayed temperature. Button [A] is to add 5 degrees, [B] to add 10 degrees, [C]to
OA 1 Addplay backto 0 °C,and button [D] to decrement by1 degree.The LCD bottom line is

to showA O baid &he buttons are wired to the MCU as shown in Fig 2.1.

To make thejob easy, he program will use pre-built library functions to handle the push
buttons. The(utton O A Ardutine (function which detects button presses) is meant to be called
once every 50 milliseconds or thereabouts. The program will also use a library function to handle
the timing. The function prototype declarations below are copied from the library header file
Ol EA E GéinkriidockO AAOAOEAA EI x AAAE ££EOT AGEIT 1

Push-button Functions

/~k
* Function ButtonScan() must be called periodically from the application program
* (main loop) at intervals of about 50ms for reliable "de - bounce" operation.
*

* |t's main purpose is to detect "button hit" events, i.e. transition from "no button
* pressed" to "button pressed" and to raise a status flag to signal the event.
*
*Th e entry argument (nButts) specifies the number of buttons (1..4) to be serviced.
* For example, if nButts is 1, only Button_A is serviced; if nButts is 3, then 3
* pbuttons (Button_A, Button_B and Button_C) will be serviced by the scan routine.
*/
void ButtonSc an(unsigned char nButts);

/*
* Function button_hit() returns the Boolean value (TRUE or FALSE) of a flag indicating
* whether or not a "button hit" event occurred since the previous call to the function.
*
* Entry argument 'button_ID' is an AS Cll code identifying one of 4 buttons to check,
* which must be one of: 'A’, 'B', 'C' or 'D', otherwise the function will return FALSE.
* |f the given button is not serviced by ButtonScan(), button_hit() will return FALSE.
*

* The flag (static variable)iscle ared "automatically" by the function so that
* on subsequent calls the function will return FALSE (until the next button hit).
*/
BOOL button_hit (char button_ID);
/~k
* Function button_pressed() returns the Boolean value (TRUE or FALSE) of a flag tell

* whether or not a given button is currently pressed, i.e. held down.
*
* Entry argument 'button_ID' is an ASCII code identifying one of 4 buttons to check,
* which must be one of: 'A', 'B', 'C' or 'D', otherwise the function will return FALSE.
* If the given button is not serviced, button_pressed() will return FALSE.
*/

BOOL button_pressed (char button_ID);

A A1

ing

I PA

AVR C Tutorial (draft- wip).docx Page24 of 56 Last revised:4 July 2020

Timer Functions

/*
* Function: TC1_initialize()

*

* This function initializes the AVR on - chip Timer - Counter TC1 to generate a periodic
* interrupt request (IRQ) every millisecond precisely. The interrupt service routine
* (ISR) increments a 32 - bit counter variable acce ssed by the function milliseconds().
*
void TCI1_initialize ();

/*
* Function: milliseconds()

*

* This function re turns the value of a free -running 32 -bit unsigned counter variable
* incremented every millisecond by Timer/Counter TC1 interrupt service routine (ISR) .
* (The counter variable is not directly accessible by the application program.)

*

* |t's purpose is to implement "non - blocking" time delays and event timers.

*

* Typical usage:

*

static unsigned long eventStartTime;
eventStartTime = milliseconds(); // capture the starting time
if (millise conds() >= (eventStartTime + EVENT_DURATION)) // time's up!

/I Do what needs to be done TIME_DURATION ms after eventStartTime
}

*
*
*
*
*
*
*
*

*

* A program can implement many independent event timers, simply by declaring
* a unique eventStart Time (variable) and a unique EVENT_DURATION (constant)
* for each independent "event" or delay to be timed.

*

* Be sure to declare each eventStartTime as 'static' (permanent) so that it
* will be kept between multiple calls to the function in which it is defined.
*

unsigned long milliseconds ();

The timer function milliseconds() returns a long integer (32bits), the value of which is the
number of milliseconds elapsed since the MCU was last reset. On every successive calldo th
function, it will return a higher value than the previous call, unless the counter overflows.
How many milliseconds after MCU reset will be counted before the counter overflows?

Maximum value of unsigned long intege(32 bits) is OxFFFFFFFF (hex) = 4,20967,295. This

number of milliseconds equates to about 1193 hours, or abo4t9 days. Our applications will be
concerned with much shorter time intervals, so a counter overflow would not matterAnd it

would not matter even if an overflow occurred inthe middle of atimedeven8 j 4 EAOB8 O 1 1 /
xIT TAAOO T &£ ¢80 AT i bl Al AT O AOEOEI AOEAAQ

So, to set up a time interval, say 50m#he function milliseconds() is called at the start of the

interval and the returned value is saved. Thereafter, the function is called again, frequentmtil

the value returned is 50 ms higher than thesavedstarting value. Refer to the comment banner

il OEA £O01 AQEI 1T TPOEAADUDKA GEebiifQajud of the constant
EVENT_DURATION 50 (ms).

AVR C Tutorial (draft- wip).docx Page25 of 56 Last revised:4 July 2020

To set up a recurring 50ms time interv i.e. aperiodic eventd, a new interval is started when
each 50ms interval ends, i.e. a new statime is captured and saved.The process is repeated.

The function ButtonScar() does not return anything It reads the button input pin states and
determnAO EZ A AOOOI T OEEO6 EAO 1 AAOOOAA OEIT AA C
pressed onthe current call, but the same button waseleased on the previous calllf such an

AOAT O EO AAOAAOAAR OEA £071 A OHiinthe b/ GodeATodedd A Co
the value of this flag, the application must call another function, liton_hit(), which will return
04256 EA A AOOGOIT EEO xAO AAOAAOAAR 1 OEAOxE
character code representinghebu0OT 1 1T £ ET OAOAOOh E8A8 O!86h O
For example, to check if button [B] was hit, weouldwrite OE A OOAOAIT AT 08

if (button_hit (pBR)) .. ;

Remember that this function will return O O O&n éncefor each button hit, i.e. it will return
O AA bnBubsequent calls, until the button is released and then pressed again.

However, as students of embedded systems, you will eventually need to learn how to handle
push-buttons, switches, keypoards and other electremechanical input signals reliably (A goal
place to start is to study thesource codeof the AVRBEDIibrary functions.)

Getting back to the task at hand, the formula relating Celcius to Fahrenheit is:
°F=(9/5)x°C + 32

Recall thd the result of an integer division is truncated to the nearst lower whole number, so
the expression (9 / 5) evaluates to 1. Clearly this will give the wrongesult if used in the above
formula. Aworkaround would be to use floatingpoint arithmetic, but this generates more object
code, rurs slower than integer arthmetic and it would complicate the display of numeric data.

A better solution is to stick with integer operationswhere expressions can be rearranged to yield
the required accuracy of resultsin our example, the compiler can be coerced to perform the
multiplication by 9 before the division by 5,by rewriting the formula, thus8

deg F=(9 * deg O / 5 + 32;

Test this formula with a calculator, doing the multiplyby-9 before thedivide-by-5, with a few
random values of degrees @o satisfy yourself thatit yields adequate accuracy.

(AOA EO OEA Al i pPi AOGA DPOI COAI 1 EOOET C8

/**

* Project: C_lesson2 | Lesson 2, Example 4
* File: C_lesson2_ex4 _main.c

* Author: <your name> < date created>

*

* This program demonstrates some concepts using integer ari thmetic.

* |t converts degrees Celcius to Fahrenheit.

* |t also shows usage of library functions for timing and push - button input.

*/
#include <avrf/io.h>
#include <stdlib.h>
#include <string.h>
#include "lib_avrbed.h"

/] Text strings to display

AVR C Tutorial (draft- wip).docx Page26 of 56 Last revised:4 July 2020

char MenuBar(] "A+5 B+10C=0D - 1";
char Blanks [] " " ; /I array of 16 spaces

int main(void)

{
static unsigned long start_of 50ms_interval ;
static int last deg C ; /I save last deg_C value here
int deg C = 0; /l initialize deg_C
int deg F;
char buff [20];
Icd_initialise 0; /I Initialize 1/0O ports and LCD module
lcd_command LCD_CURSOR_QFF // Cursor OFF, display ON
lcd_cursor_posn (1, 0);
lcd_print_string (MenuBa; /I'S how menu text on bottom line
TC1 initialize (); /I Initialize the timer TC1
GLOBAL_INT_ENABQE /I Enable interrupts
last deg_C = 999;
start_of _50ms_interval = milliseconds (); /I capture starting time
while (1) /I'loop forever
{
/I Every 50ms, do a button scan...
if (milliseconds () >= (start_of 50ms_interval + 50)) // 50ms interval ended
{
ButtonScan (4);
start_of_50ms_interval = milliseconds (); /I start of next 50ms interval
}
/I Check for a button hit
if (button_hit ('A") deg C=deg C + 5;
if (button_hit ('B") deg C = deg C + 10;
if (button_hit ('C") deg_C = 0;
if (button_hit ('D") deg C=deg C- 1,
II'lf the temperature has changed, update the displayed data
if (deg_C != last deg_C)
{
lcd_cursor_posn (0, 0); /I clear top line
lcd_print_string (Blanks);
/I Convert deg.C to deg.F
deg F=(9 * deg Q / 5 + 32
itoa (deg C buff , 10); /I Display deg_C
lcd_cursor_posn (0, 2);
lcd_print_string (buff);
lcd_write_char (OxDF); /I add degree symbol
lcd_print_string ("c ="
itoa (deg_F, buff , 10); /I Display deg_F
lcd_print_string (buff);
lcd_write_char (OxDF); /I add degree symbol
lcd_write_char ('F");
last deg C = deg_C /I save the new de g_C value
}
} /' end while
}

AVR C Tutorial (draft- wip).docx Page27 of 56 Last revised:4 July 2020

Take a moment to study the workings of te program, in particular the timing of thebutton scan
routine and the display update sequence. Note that the display is updated only when the
displayed data changes, i.¢he user changes the degrees C settinthis prevents the display from

flickering.
.1 OA A1 0 OEAO OEA DOl COAiI EO OIOE @DAAE EEIAIADEE
limits on the temperature range, i.el 10 to +250 °C. You can easily add some cqater the tests
for button hits, to restrain the value of deg_C, for example:
if (deg_C>250) deg_C = 250;

If there is anything in theprogram codeOEAO UT O AT 1j8AG OBl AARRGRO A U T O
pleaseO A £A O Qebs Rérérdhice®™andl 6 A O Agbi AT AGEIT T 8

This photo shows the output to be expected on thaVRBEDA E OBl AU 8

c
c
-
c
<
G
G
G
G
3
3

A
"

(&

< . -

AVR*BED

AVR C Tutorial (draft- wip).docx Page28 of 56 Last revised:4 July 2020

A word about coding style

Good coding style makes a program look more elegant, makes it easier to read, easier to debug
and reduces the likelihood of making mistaks.

Proper use ofGndentsg, i.e. the leading blank spaces on a line before a statement, is very
important for code readability. Here are a few guidelines to begin with

T An opening brace after a keywordsuch asQvhile 6 flor 6Gif6 @se®h A OAhon@ET O1 A
new line at the same indent level as the keyword. Statements in between an opening

brace and matching closit¢ AOAAAh Al 01 OAOIi AA A @&Ad i pi O1
indented one level (typically 1 tab or 4 spaces).

Tabs may be used for leading interbut shall not be used anywhere else on a line

Source lines should not exceed 100 character places.

Leave oner two blank lines (no more than two) between functions.

A space shall be inserted after keywords.

= =2 =4 A A

A space shall be inserted on either sida bfnary operatof+, -, *,/, &|,").

roo = wombat + tail; // correct
emu = emu+1; I prohibited
mask = mask &0xFF; // prohibited
1 A space shall be inserted on either side of assignment operatots, (&=, etc), also
comparisorand logicaloperators (==, >=, <=, I=, &&, ||).
if (signal != 0) result = TRUE; // correct
if (signal'=0) result=TRUE; /I prohibited
1 No space shall be inserted between a unary operator and its operand, e.g.
mask = mask & ~(1<<4); //corre ct
mask = mask & ~ (1<<4) ; // prohibited
if (Visprint(c)) ... ; /I correct
1 No spaceshallbe inserted between an arr@meand its index expression, e.g.

value = lookuplidx]; /I correct
value = lookup [idx]; // prohibited

1 No space sl beinserted between a functiolmmeand its argument list, e.qg.

strepy (s, t); I correct
strcpy (s, t); 1 prohibited

AVR C Tutorial (draft- wip).docx Page29 of 56 Last revised:4 July 2020

Lesson 37 Analogue-to-Digital Conversion

AVR Analogue Input using the ADC

Refer to the device datasheet O! 41 ACA Tt ¢ . @aAVRD@tgShéer mmimm¢mx t 8 DA
chapter 24,page257. The AD(eripheral in the ATmega328P is functionally identical, so you
can use the same dataheet. (The ATmega328/PB data-sheet is substantiallybigger.)

The AVR orchip analogueto-digital converter (ADC) has a variety of operating modes and
options. The simplest mode is to let it run automatically, taking new readings as frequently as it
can. This mode is usable only if a single channel is to be read continuously. Otherwise, it is
necessary to use ranual triggering mode.

ADC modes and options are configured using a couple ebB command/status registers, named
ADCSRA and ADMUX. Refer to the datiaeet to learn the purpose of each of the bits in these two
registers.

Bits of particular interest in register ADCSRA are: ADEN (bit 7), ADSC (bit 6), ADATE (bit 5),
ADPS2, ADPS1, ADPSO (bits 2, 1, B)register ADMUX the bits oparticular interest are: REFSO
(bit 6), ADLAR (bit 5),MUX3 (bit 3), MUX2 (bit 2), MUX1 (bit 1) and MUXO (b0).

Example:

To configure the ADC for continuous reading of input BC3 (= I/O pin PC3), usingthe
device DC supply as theoltage reference AVCQ, and the ADCclocked at F_OSC / §4he
register initialisation would be:

ADCSRA =0b11100110; // = OxE6

ADMUX =0b01000011; //=0x43
AEA 1'$# AiI 1T OAOOETT OAOOI O E-bitregister,Adalpariof regit&A E Al
is provided in the ADC to hold the conversion result. These are named ADCH andCADor the
high-order and low-order bytes, resp7 EAT OET ET AA6 Of-gthhedgelword, e | AE.
10-bit result can be either left or right justified in the word. Usually, an application would need
all 10 bits, to get maximum reading accuracyl.o set up the ADC to righfjustify the 10-bit result
ET OEA OAGCEOOAO DPAEO ! $#(d!$#,h xQEOA A mn OI
In some applications, only 8bit precision may be needed. There is a setup option for the ADC to
place the most significant 8its of the result into the register ADCH, so thaonly one register
needs to be accessed to fetch the result. In speedtical applications, this option may be
preferable. Setting bit ADLAR (bit 5 of register ADMUX) higlwill cause the 10bit result to be
left-justified in ADCH:ADCL, so you only need tead the single 8bit register, ADCH, containing
the 8 most significant bits.
, AO6O AAOGAIT TP A # £EOI A\idnADCput pmATAeun@ienAwill Bavd O A C
one entry argument to specifywhich ADC input is to be read. The function willeturn an integer
value being the 10-bit conversion result, i.e. a number in the range 0 to 1023 he function
OPOT O1 OubAd AAAT AOAOGEIT EO(
unsigned ADCReadlnput (BYTE musel) ;

The argumentmuxsel is a number representing the ADC input pin. For examplep tread the
voltage on analogue input ADC3 (= pin PC3), the arg. value would be 3. Note that the data type

AVR C Tutorial (draft- wip).docx Page30 of 56 Last revised:4 July 2020

Byt® | OO0 AA AARAAET AA AO 0OOI1 OElesk Beferedcé& Madu® pagd O
8, under the heading Data Typas The return data typeis unsigned int (x E A A6 @fpled,
SO may be omitted.

An ADC reading represents the voltage on the selected input pin as a proportion of a reference
voltage. There is a choice ofeference voltage sources, e.g. external reference AREF pin),
inter nal precision voltage reference £ 1.1V), or the device DC supply voltage (ABC= +5V).

A conversion result (reading) of 1023 represents fullscale (100%) of the reference. Thus, if the
selected reference is ACC(+5V), full-scalewould be 5.0V. If an extenal reference is selected,
say AREF =3.0V, then the fullscale reading (1023) represents3.0V. A reading at 50% of full
scale (512) would represent 1.5y and so on.

The first thing the function needs to do is to select the voltage reference source ame input pin
for reading. Both these things are achieved by writing into the register ADMUZXhe following
code selects theADC supplypin (AVCC= +5V) for the reference and sets the int multiplexer
bits to select the required analogue input, passed tdé function as its argumentmuxsel.

ADMUXe 0x40 + muxsel; /I Select Vref = AVCC (+5V); select MUX channel

Preferably, the function should also check that the argument valuevalid. It must be in the range
0 to 15, but there may be other constraits imposed by the application. The AVIBED, for
example, can use only ADC1 ~ ADCS5 (i.e. pins PC1 ~ PC5) for analogue inputs.

The next thing the function needs to do is set up the AD@atrol registers for the required mode
of operation, which is to performa single manual conversion on the given inpufhis is achieved
by the following code:

ADCSRA = 0x06; Il Set prescaler to divide F_SYS by 64
ADCSRA= ADCSRA (1 <<7) ; /1 Turnon the ADC(bit7 =1)
ADCSRA= ADCSRA (1<<6) ; /I Start single conversion (bit6 = 1)

The ADC clock is derived from the system clock, the frequency of which is divided by a power of
two (i.e. 2, 4,8, 16, 32, 64 128) to get the desiredADCclock rate. There is a tradeoff between
conversion accuray and speed. For most applications, the ADC closkould be in the range
62.5kHz to 500kHz. Assumingthe system clock iSMHz and the prescaler is set to divide by 64,
the ADC clock rate wuld be 125kHz. (Refer to datasheet for other prescaler values.)

When bit 6 of ADCSRA is set high, conversion is started. When the conversion is comgletiee
ADC will clear this bit. The function must wait until bit 6 is clear beforeeading the result

registers. This can be done with do-nothingOx EET A6 111 bh OEOOq
while ((ADCSRA (1 << 6)) I= 0)
{

[/ wait till conversion done (ADSC == 0)

}

Bit 6 of ADCSRA is singled out Hyitwise ! . $ 0 thd r€ister value with a bitmask (1<< 6).
When bit 6 is Low (0), the conditional expressiofADCSRA& (1 << 6) will evaluateto zero.

Finally, the function must read the result out of the ADC register pair ADCH:ADCL and return
this value. This is done #p the code here:

A A

AVR C Tutorial (draft- wip).docx Page31 of 56 Last revised:4 July 2020

low_byte = ADCL,;

result = ((unsigned) ADCH)<< 8; //High -order byte (2 LS bits)
result += low_byte ; //Addlow - order 8 bits

return result ;

The low-order byte ADCL is read out first, assuming a 16it result is required. This is essential

to proper ADC operation.(See datasheet for details.) The register ADCL is assigned to a
temporary variable,low_byte . The highorder byte ADCHis then readinto the 16-bit result and

shifted into the correct position (high-order 8 bits). Note that the8-bit register value is coerced
inoal6AEO ET OACAO AU OOEingyned) AOGHWIENOW the castan BEEE O A/
value shifted left 8 bitplaces would evaluate to zerg not the desired outcome!

Putting it all together, complete with banner comments, the function definition looks like this:
/*

* Function ADC_ReadInput() starts a one -off conversion on the given input, waits for

* the conver sion cycle to complete, then returns the 10 - bit result.

*

* Entry arg: muxsel = ADC MUX input select: 1 = ADC1, 2 = ADC2, ... 7 = ADC7

* (ADCO, ADCS8..13 N/A, 14 = 1.1V internal ref, 15 = GND/0V)

*

* Note: The function assumes the select ed ADC port pin is already configured as an
* input and that its internal pull - up resistor is disabled.

*
unsigned ADC_Readlnput{ BYTE muxsel)

{
BYTE low_byte ;
unsigned result = 0;
if (muxsel == 0 || muxsel > 15) return 0; // PCO/ADCO is N/A (=LCD_E)
ADMUX= 0x40 + muxsel; // Select Vref = AVCC (+5V); select MUX channel
ADCSRA= 0x06; Il Set prescaler to F_SYS/64
SET_BITIADCSRA, ADEN); /[Enable A DC
SET_BIT(ADCSRA, ADSC); /I Start conversion
while (TEST_BITADCSRA, ADSC)!= 0)
{
/I wait till conversion done (ADSC == 0)
}
low _byte = ADCL;
result = ((unsigned) ADCH)<< 8; //High -order byte (2 LS bits)
result += low_byte ; //Add low- order 8 bits
return result ;
}

This function is included in the AVRBED code library. The code differs a little from thpreceding
snippets, but its operation is identical. The onlyemarkable differenceis the use ofexpressions
usingOi AAOT OB %2 DA E4 %HX4 m")elcs A b

This is a good place to learn aboumacros8 01 AAOA OAAA OEA OASOEI T
2 AEAOAT AA - AT OAl 6 h b Adefike MACR® NAVE O ThénkaAual EXRIAB ET C g
how to define macrosand how to use them in a program.

Definitions of macros used in the ADC read function, copied from the code library:

AVR C Tutorial (draft- wip).docx Page32 of 56 Last revised:4 July 2020

#define TEST BlITvar, bit) ((var) & (1<<bit))

#define SET_BIT{var, bit) ((var) |= (1<<bit)

#define CLEAR_BI{var, bit) ((va r) &= ~(1<<bit))

The argumentvar may be a register, byte or integer variable of any size. Abgt is a number
representing the bit position (in var) to be modified or tested. These macros provide more

readable expressions than the equivalentaw code. Forexampe, to set bit 5 of register PORTB
high, without affecting any other bits, we could write:

PORTB =PORTHB (1 << 5);
But using a macro, the equivalent statement is simply:

SET BIT(PORTB 5);
) O CAOO AAOOAO8 4EA | 6 EAAAROCAIEEDRI DA OOAEDBEDIC
for all of the register bit names found in the ATmega88/328° data-sheet. So, instead of using a

meaningless number, we can write the bé @ame. For example, in the above ADC function,
instead of writingthesd AxEAO AOUDOEA AT AAS

ADCSRA= ADCSRA (1 << 7); /1 Turnon the ADC(bit7 =1)
ADCSRA= ADCSRA (1 << 6); /I Start single conversion (bit6 = 1)
8 OEA T EAOAOU 4&£01 AOEIT OOAmacvBA ARBOEOAIT AT Oh A

SET_BITIADCSRA, ADEN // Enable ADC
SET_BITIADCSRA, ADSC); /[Start conversion

8 x E AnEMand ADSGare register bits (i.e. symbolic constants with values 7 and 6, resp.)
defined in the header file. A key benefit of usingames for bit positionsinstead of raw numbers
is that you are less likely to make a mistake transferring numbers from a datheet.

Likewise, the conditond A ZDOAOOEI 1T EI OEA OxEEIi A6 111D 00
while ((ADCSRA& (L<<6)) = 0) ..

has beenreplaced with amore elegant form using a maas, thus:
while (TEST_BITADCSRA,ADSC)!= 0) ...

The relational operator (=) is redundant, as the macra’EST_BIT evaluates to either TRUE or
FALSE, so the statement could have simplified further to this:

while (TEST_BITADCSRA, ADSC)) ...

Observethat the way a macro (with arguments) is used in a program is very similar to a function
call, but the way macros are defined is much different to functions. Where the compiler finds a
macro expressionin a program, it simply substitutes the text omprising the macro definition
and it substitutes the respective argumerg. Thus, the code generated by a macro expression is
replicated for every instance of the macro appearing in a program. Conversely, the code
generated by the compiler for &unction definitio n is instantiated only once. The same function
code is executed wherever a call to that function appears in a program.

AVR C Tutorial (draft- wip).docx Page33 of 56 Last revised:4 July 2020

Consequently, macro definitions should be kept shortin particular for macrosused often in a
program. Otherwise, adinction is preferable. Macros are often used instead of functions where

OEA AT AA 1 600 AgAAOOA NOEAEI UHdeldyd) Af AiGztA caliing,A OT O
argument passing and returiing. Exception: There is a special type of function defindn called

Al ORBT EDBIxAEGEAH &x1 OEO OEI EI Aol U OF A [T AAOiT 8 , AC
later, or better still, forget about them!

There are more examples of macwin the AVRBED library header file.

8

Lesson 3Exercisel

Write a program toread the ADC conversion count (rawesult) using the library function
ADC_ReadInput(). lansform the reading into avoltageand displayboth the count and
voltage (0..5000 mV)on the LCD panel.

An outline of a program to accomplish this isl®own below. Your task igo fill in the gaps
in the code to complete the programkor each semicolon appearing alone on a line, a
single C statement is sufficient to perform the operation noted in the comment above it.

/**

* File: Lesson3_ex1 outline.c

*

* This program uses the AVR on - chip ADC to measure the voltage on an input
* pin (PC3) wired to a potentiometer providing a 0..+5V signal source.

*

* This is just an outline. You need to fill in the gaps as noted in the code.
*

#include <avr/ io.h>

#define F_CPU 16000000UL /I CPU runs at 16 MHz

/I These header files contain definitions needed by library functions:
#include <util/delay.h>

#include <stdlib.h>

#include <string.h>

#include "lib_avrXmini.h" /I def's for lib_avrXmini.a

int main(void)

{
char strNu nj20]; /[l number converted to string
int adc_count ; /I Raw ADC conversion count (0..1023)
int reading_mV; /I Voltage reading (0..5000 mV)
int last_reading ; /I previous ADC reading (last read)
Icd_initialis e(); /I Initialize LCD module
lcd_command(LCD_CLR); /l Send command to clear LCD

lcd_command(LCD_CURSOR_OFF);/ Set Display ON, Cursor OFF

/I Configure 1/O pi n PC3 (= ADC3) as analogue input:

’

lcd_cursor _posn(0, 0);
lcd_print_string("ADC count: ");
lcd_cursor_posn(1, 0);
Icd_print_string("Voltage: ");

AVR C Tutorial (draft- wip).docx Page34 of 56 Last revised:4 July 2020

while (TRUE) // loop forever

{
adc_count = ADC_Readlnput(3); /I Read pot input ADC3/PC3
if (adc_count != last read ing) /l if reading has changed...
{
/I Clear displayed data
/I Convert raw ADC reading (adc_count) to milliVolts (reading_mV)
/I Convert adc_count to string of deci mal digits in array strNum
/I Display adc_count on top line of LCD
/I Convert reading _mV to string of decimal digits in array strNum
/I D isplay millivVolts on bottom line of LCD
lcd_print_string("mVv");
}
last reading = adc_count ;
_delay_ms (50);
} Il end while

Here is aphoto of the AVRBED display with thecompleted program running...

atalalatatololal Talot Sa

LLEEEEEE

sAnanan~ann00g

AVR C Tutorial (draft- wip).docx Page35 of 56 Last revised:4 July 2020

Lesson 47 Interrupts and Timer/Counter Module Usage

General-purpose millisecond timer function (revisited)

2 A £ x~

You may recall fom Lesson 2that A 1 E A O A O hiillise&onddjOEQd HOAO OOAA EI
convert degrees Celsius to Fahrenheit (page 26 or thereabouts). It would be wise to go back and
refresh your memory on how the functionwas deployed You may recall also that ne of the

reasons for using this function is that it gives improved reliability and precision for timing of

AOAT 66 AT A AAlI AuUO OEAT OEA DOEI EOQEOAta Ol £O0x AO.
Later in this lessonwe will analyse the inner workings d the milliseconds() function. You will

seehow the function usesthe AVR onchip Timer/Counter module TC1to achievehigh precision

for systemtiming. The function returns OE A OA1 QA OT A EA COERA DT OO OAC
ET AOAI AT OAA OABOROANOCH EANTEWAAT OAKNOEOA AOOI T AO
interrupt E AT A s de@d@d tomanageincrementing of the counter variable So we alsoneed to

take a look a (processor interruptsd-- what they are and how they can be exploited.

Processor Interrupts

1T OET OA 00 O mddyicaEcondithoh, mdstudual) a hardware signal from an oghip
peripheral module orfrom AT A@OAOT A1l AAOEABAKROREEAGT IOOEICQGAMDI
execution.4 EA OAAOI 006 OAEAO OHEA T A£ICAOI ALk Al ODAABA
Oi OOET Aoh AAAOAOEAOAA O)3268 7EAT Al EIT OAOOOD
IS generated, the normal program flow is iterrupted immediately, but temporarily, while an

interrupt service routine (ISR) is executed. When the ISR @GEOOh E8A8 xEAT OE
returns, normal program flow resumes from the point where it was interrupted.

A different ISR must be defined (€. coded) for every possible source of interrupt signal which

could occur in the aplication. The AVR processor provides special registduits to configure the
interrupt actions of all availableinterrupt sources. By default, on processor reset, all IRQ s@es

are disabled, so nothing can interrupt normal program flow. In addition, thek EO A OCI
ET OAOOODO CPRUsAaQ$ register whidh As used to enable or disable all interrupts,
regardless of the individual peripheral configuratiors.

Examplesof on-chip peripheral IRQ signalsare: ADC conversion complete, UART (serial pgrt
data received, Timer/Counterregister @verflowd Top Count reached, Output Compare match,
etc. This tutorial will be concerned primarily with Timer/Counter interrupts.

The C code for an ISR looks like any other function, excepttihe case of the AVR@C compiler
atleastOEAU Al 1 EAOA OBndasbdidarumenivhidispedifje8tBedRQ signal
source. An ISR definition takes the general fan:

ISR(vector_number)

{

/I C statements

}

8 x E the@ahgumentvector_number is just a number assigned to the interrupt signal (IRQ)
source.You can find these numbers in the AVR datasheet.

AVR C Tutorial (draft- wip).docx Page36 of 56 Last revised:4 July 2020

4EA 141 ACAsss8 AAOEAA EAAAAO &£EI A jEITAI OAAA Ot
names, for all the IRQ vector numbers. Using namasstead of raw numbers improves program
readability and minimises the chance of a mistake. For exampl® create an ISR function to
EAT AT A AT O1I OAOA&I 1T x6 1T AAOOOAT AA ET 4EI AOor#1 O1

ISR(TIMER_OVF_vect)
{

; /I cod e to handle TC1 counter overflow

{

TimerOl OAOA&I 1 x6 1T AAOOO xEAT A OEI AOTAIT O1 OAO OACE
to zero, assuming it is configured to count upwards. This will make more sense when we look at
how AVR Timer/Counters opeate.

Perhaps you are wondering where the term® OAA QT 06 AT 1T AO A£O0iT i e 7Al 1N
Q/ectordisjustAT T OEAO OAOI &£ O ObPT ET OAO6 memdySARARA CGEATO GHO
in this context. The AVR program memory has a numbeif addresses reserved for a table of

ODPbI ET &éh(eniehbeing theentry address ofan ISR. There is a pointeassignedto every

possible IRQ sourceThe IRQvector number is simply an index into this table.

By default, if there is no corresponding ISRunction) defined for any IRQ signalits pointer will

be initialized to the programreset AAAOAOOh Al O1T ET T x1 AO OEA OOAO
signal is generated and the respective IRQ source is enabled and global interrupts are enabled

and there is no ISR defined for that particula IRQ source, then the program will just restart

(which is usually better than doing somethingquite unpredictable!).

Normally, a program will have an ISR defined for each expected (and enabled) source of
interrupt (IRQ). When an IRQ is generated, for exghe when a timer register reachesa
predefined value, the CPU completes the current instruction being executed, then it finds the
vector number assigned to the IRQ sourcéhen fetches the start address of the coesponding

)32 AT A EOI PO ODI E@&OI TERAT OAOOOBO6 ET OOOOAOQEI I
program execution continues from the instruction following the one that was interrupted.

AEA # AT 1 PEI AO CAT AOAOAO OwldvelMBAKSQUCIANS) D edsiirdd A | E
that no CPUO x 1 O ErEgistéré are corrupted AOOET ¢ OEA)32 OAAIT 16 Al
However, the compiler has no way of predicting when an IRQ will occur, so it cannot prevent an

ISR from corrupting any global variables, 1/0O or peripheral registers which could be being
accessed by the mainline program when an IRQ occurs. It is the responsibility of gqgplication

code to disable any source of interrupt, temporarily, where there is a chance that an ISR could
corrupt a global variable or disrupt ecritical I/O operation. An example of this will be given when

we look at the coding of the millisecond() function.

But first, we need tounderstand AVR Timer/Countermodule operation z at least the modes that
we will be concerned about.

AVR C Tutorial (draft- wip).docx Page37 of 56 Last revised:4 July 2020

AVR Timer/Counter module operation -- Prerequisite reading:

The AVR orchip Timer/Counter modules(TCO, TC1 and TQXave avariety of operating modes

and optionsto suit a broad variety of applicationsThey can be used to cause precisine delays,

for program task timing, to generate geriodic pulse waveform on an output pin(with fixed or

variable pulse width, hence aPWM signgdi CAT AOCABROA © Ditofnbasirddr@b OOh
period (hence frequency) of a periodicpulse signd applied to an input pin,or to measure the

pulse width of an input signal(periodic or one-shot), and so on.

Module TCOisan8AEO OEI AOT AT Otbddpdvn EcdnteErAgiter/nd a pair of

O/ OOP OO # hidteBsfebA of siz@ & bitdlodule TC1has 16-bit registers. In the simplest

mode of operation, the timercount register (TCNTn) is incremented or decremented (i.e. it

counts up or down in binary) every time a clock pulse occurs. There is a choice ofad@ources.

A clock signal can belerived from the CPU (system) clock, optionally via a frequency divider

AAT 1T AAOAMATIOID@MAh 1T 0 AT AGOAOT Al dedidatedinfut gnE CT AT AAT
The remainder of this lesson assumes an understanding olVR Timer/Counter operation, as
OpMHEDO 4EI AOT#1 O @dyel20pTo befiduth, @erwill Behconcerned with timer
modestermedO. | O A1 6 AT A O#1 AAO 4ET AO 11 #11 PDAOAG j
Note: Timer/Counter modulesin the ATmega328P(fitted on Arduino Nano and Atmel Xmini

boards) are functionally identical to those in the ATmega88PA.

Codeto generate a periodic interrupt

, AO6 O 1 11 EampleCod® ftakeA frofa@he AVRBED function library, which sets p
Timer/Counter #1 to generate a regular interrupt request (IRQ) every millisecond, precisely.

The library function, TCLlinitialize (), copied below, initialises TC1 inCTC mode.

/* Function: TC1_initialize()
*
* This function initializes Timer - Counter TC1 to generate a periodic interrupt
* request (IRQ) every millisecond precisely.
*

* TC1_initialize() must be called from main() before enabling global interrupts.
* Global inte rrupts must be enabled for the timer functions to work.
*

void TCL1 ini tialize ()

{
unsigned top_count = (unsigned long) F_CPU/ 8000;
TCCR1A= 0x00;
TCCR1B= 0b00001010; /I CTC mode; Prescaler=F CPU/8
OCR1AH: HI_BYTH top_count); /I Load OCRI1A register for 1ms Top count
OCR1AL= LO_BYHtop_count);
TC1 OCA IRQ_ENARLE /I Enable Output Compare (A) interrupts

}

The 16-bit counter register TCNT1 (comprising two 8bit registers, TCNT1H and TRT1L) is
incremented on each clock pulse, i.e. it counts up automatically, untiié count value matches

the value stored in the Output Compare Register, OCR1&So comprising two 8-bit registers,

I #2p! (AT A [#2p!, Q8 4EAT h OEA AT 61 6 OACEOOAO

AVR C Tutorial (draft- wip).docx Page38 of 56 Last revised:4 July 2020

software intervention) and the cycle repeats indénitely. Every time the Output Compare match
occurs, an OCA interrupt request is gerated. This mode of operation(CTC)is illustrated in the
AEACOAT AAIT x8

The timer initialisation function is simple. All it needs to do is set up the mode of operatiotine

TCNT1
register
value
A
Top Count = OCRI1A reqister value
1000
|_
Z
)
(e}
O
0 >
0 1 2

Time -- milliseconds

clock source and prescaler divide ratio, and write the correct value into the Output Compare
Register OCR1A, to give a counter cycle time (period) of one millisecond. The funetioust also
enableET OAO0OODPOO 11 @OMODDEHD @lhssc@AdOER Qilf dkecute.

The Timer/Counter mode is set by writing data into a pair of control registers, TCCR1A and
TCCRA1B. Since we do not want to generate a waveform on an outpit, the default value of zero
is written to register TCCR1A (in case was not already zero). CTC mode is selected by register
TCCRA1B, bits 3 and.4Refer to datasheet, Table 18, page 143.) BitsvGMi1and WGM1gust be
setto 1 and O, resp. to select Mode 4 (CTC).

The counter clock source and prescaler value are selectd by the 3 leastsignificant bits of
register TCCR1B, i.e. bits CS12, CS11 and CBhe.function writes 010 (binary) to these bits so
that the internal CPU clock is selected with a prscaler divide value of 8. The counter clock
frequency will be 1/8t of the CPU clock.

The CPU clock frequency is defined in a header file somewhere by a macro (symbolic constant)
xEOE OEA 1 Al Avill Geset t 6ithed 30008 EBMHz) or 16000000 for 16MHz)
depending on your hardware platform (AVRBED, NaneBED, Atmel Xmini, etc). The first line in

OEA &£O01 AOGETT 4#p ETEOEAI EUAj] q AAE£ERdiQaluadf ET O
F_C® divided by 8000. Thus, if F_CPU is 8MHz, top_count will be 100 if F_ CPU is 16MHz,
top_count will be 2000Q

The function sets the@utput Compare! degister value equal to top_count, which is the number
of TC1 clock pulses in one millisecond. Congdthe case where the CPU clock is 8MHz. The
counter clock will be 1IMHz (out of the prescaler), so therefore tte clock period will be 1 micro
second. How many micreseconds are there in 1 millisecond? Answer: 100050, in this case,
top_count must be 1000 This value is written to register OCR1A to give a counter cycle of 1ms.

AVR C Tutorial (draft- wip).docx Page39 of 56 Last revised:4 July 2020

Recall from the datasheet that 16it registers in the Timer/Counter modules are composed of
two 8-bit registers, the highorder byte of which must be accessed (written to or read &m) first.
Hence, the C code to write register OCR1A consists of two statements, the tioswrite the high-
order byte to OCRA1H and the nexb write the low-order byte to OCR\1L.

Lastly, the functionmust enable interrupt requests generated by Output Gopare match events.
This is done by setting bit 1 OQCIE1A in register TIMSK1 There are various ways of codinghis,
£l O AgAiI Pl Ah OCREBGMaOERAEEAT GEEAD O

SET_BIT(TIMSK1, OCIE1A);
But that code might look a bit cryptic without a comment added so the library header file has

macro definitions which aim to improve code readabilityand to sawe you the tedium of looking
up the datasheet to find the relevant register and bit names.

/I Macros to enable & di sable Timer - Counter TC1 Output Compare interrupt
#define TC1_OCA_IRQ_ENAK)LE (TIMSK1 |= (1<<OCIE1A))
#define TC1_OCA_IRQ_DISABQE (TIMSK1 &= ~(1<<OCIE1A))

The library also provides macros to extract the higtorder byte or low-order byte from a 16-bit
unsignedinteger variable8 4 OU O O1 AAOOOAT A OEA x1 OEET CO 1 .
#define HI_ BYTHEw) (((w) >> 8) & OxFF)

#define LO_BYTEW) ((w) & OxFF)

The next part of this lesson will analysethe Interrupt Service Routine (ISR) whichis to be

s oA s~ 2NN

4EA ET OA OO@unber)@gdokidtédiwithan O/ OODP OO il A AEOAREEDto p ¢ 8
ATmega88datasheet, Table 121, page 63.) For convenience, this number is defindd the

AT 1 PEI A0 EAAAAO ABymBolic@enbtdnt TuVMERISADORPA AddThid vector

number uniquely identifies the respective ISR to be recuted whenever an OCA match occurs.

Earlier in the lesson, we noted that theurpose of the ISRis simply to increment a count variable

(32-bit unsigned long integer) This variableneeds to be accesile by other functions, so it must

be defined as eitker global or static In a library, it should be defined astatic to hide it from

O0OAO ApbPI EAAOEIT ~&EO01 AOET 108 7EUe 8 "AAAOOA AA
ISR and ordinary functions can be problematicA shared variable is best made acessible to
application functions via a dedicated function designed to prevent errors.

The shared count variable is declared this way:

static unsigned long count_millisecs

The timer ISR coddo handle the millisecond counteris very simple, as follows..

ISR(TIMER1_COMPA_vec}
{

}

Application programs must first call the setup function, TC1_initialize(), then enable global
interrupts using the compiler built-in function, sei () . The library header file provides a macro
to perform the same functionusing a less obscure nameGLOBAL _INT_ENABQE

count_millisecs ++;

AVR C Tutorial (draft- wip).docx Page40 of 56 Last revised:4 July 2020

I #FOAO0 OEA OEIi AO ET EOEAI EOAOCEI T h AOAOUOEET C EA
a regular interrupt, every millisecond, causing the ISR to be executed. Hence, every milliseto
the variable count_millisecs will be incremented.

Sa why not declare count_millisecs to be aglobal variable and allow any function in the
program to read its value anytime?

The reason is this: The variable count_millisecs is composed of 32 bits, #ebytes of memory.

The AVRCPUhas an 8bit internal data bus z it reads data from memory one byte at a time. It

takes 4 CPU cycles in succession to read dyte variable. The CPU can be interrupted at any

time during the 4-cycle sequence. Consider theonsequences if a function iran application

program was reading tre (global) variable count millisecs and an interrupt occurred half way

through the 4-byte read sequenceSomeof the bytes couldhave beenupdated by the ISRwhile

other byte(s) read before the IRQ occurred would have values that existed before the IRQ.
Integer arithmetic operationsh ET A1 OAET ¢ ET AOAT AT Oh AAT ET OT1
multi -byte variable. Soa copy, if interrupted, could result in corrupted databeing copied

How can such data corruption be prevented?
3EI Bl A8 $ E OA feingbrarily] whife ceadih@Ontfii-byte variable!

AEAO6O0 xEU A AAAEAAOAA £OT1 AOCEIT EO DPOAEAOOAA
handles the necessary precautions. Here is thHérary function which reads the millisecond
counter variable,count_millisecs

/*

* Function: milliseconds()

*

* This function returns the value of a free - running 32 - bit count variable,
* incremented every millisecond by Timer TC1 interrupt handler (ISR), above.
*/

unsigned long milliseconds ()

{
unsigned long temp32bits ;

// Disable TC1 interrupt to prevent corruption of count_millisecs in case
Il interrupted here in the middle of copying the 4 bytes (32 hits)...
TC1_OCA_IRQ_DISABLE

temp32bits = count_millisecs ; // capture the count value (4 bytes)

/I Re -enable TC1 interrupt
TC1_OCA IRQ_ENAR)LE

return temp32bits ;

}

Although it may not be obvious from the C code, th®llowing statemert translates into MCU

instructions to copy 4 bytes, one after the other, from count_millisecs to the temporary local

variable, temp32bits. During this sequencef instructionsh / O OB OO ¢OCA)ibtkrapls O! 6

AOA AEOAAI AAh OI OEAO OEA #4AOA AAEI C Al PEAA A.
temp32bits = count_millisecs

Consider what might happen if an Output Compare match occurred while the IRQ was disabled
Would the interrupt be missed resulting in acount error ?(i.e.loss of one millisecon®)

AVR C Tutorial (draft- wip).docx Page41 of 56 Last revised:4 July 2020

.18 4EA OEI AO EAOA -O8&entand thé IRQ will heyéreratétaid serviced
by the ISR as soon as OCA interrupts are-emabled. This assumes, of course, that it takes less
than a millisecond to perform the 4byte copy in the above function(In fact it takes much, much
less thana millisecond, so there will be no error in the millisecond count value.)

The AVRBED code libraryalready contains an ISR to handlet E i A @@Amaichointerrupts.
There cannot be more than one ISR with the same vector number in a complete application.
Therefore, a program which includesa library cannot define an alternative ISRising the same
vector number as an ISR provided in the library.

Inspection ofthe code in the AVRBED library to implementthe ISR for Timerl will revealthat
it does quite a lotmore than simply incrementa millisecond counter. The functionality provided
by the additional code will be examined in a later lesson.

Lesson 4, Exercise 1(a)

Use the milliseconds() function provided in the code library to measure the time duration
of a momentary push-button press. Wheneverthe button is released, the duration of the
last pressis to be displayed on the LCD paneThe push-button is connected béween pin
PD2 and GND, so that a button press will cause the input signal to go LoWhis is labelled
O" 0601 1 ! 6-BED&Nd Yorkinkboardwaring diagrams.)

Be sure your program activates the internal putup resistor on PD2, so that the input signal

will read High while the button is released. Thé.CDshould be updated only once each tim

the button is releasedh OT UT OO DHOT COAI xEI 1 ARAAATIOT AAF
Ul 66 0OA O1 OOOA xEAO OAIT T OAAO AT 01 AAo EO Al

Lesson 4, Exercise 1(b)
47 OAOO OEA OAI EAAEI EOU 1 £ ,bhd piogranOsAdultl guleefad Al
LED briefly whenever the button is pressedbut never when the button is released. The
milliseconds() function should be used toset the LED pulse duration as well as measuring

the button press time. That is the beauty of #function z it can be used to time several
independent events happenind@U 1T A E OT ih &n@gplication.

Timer/Counter setup to generate a variable -duty pulse waveform (PWM)

Another favourite application of micro-controller Timer/Counter modules is to generate apulse

waveform on an output pin, without requiring much software O1 O A O.ECGhde/tie timer
module is properly initialised, a periodic pulse signal is generated by the eohip logic. The

period (hence frequency) and/or duty-cycle of the output puke signalcan be updated, i.e.
changed, at any time simply by writing numbers into timer registers.

Varying the pulse duty, i.e. the timéhat the output signal is in the High state, relative to the pulse
PAOET Ah EO AT TITT1U OAOIRA} 0OMGGsard manE grabdtical | 1 A (
applications for PWM including DC motor speed control, temperature control, light dimmers,
digital-to-analogue(D/A) conversion, and so on.

AEA 162 4EIiAOr#1 01 OAO 11T AOI A0 EAOA OAORISOO 11
In the program example to follow,Timer #0 willbe used in8AEQO O&AOO 07 -bd 11 A

AVR C Tutorial (draft- wip).docx Page42 of 56 Last revised:4 July 2020

OEi AOTAT 01 OAO OACEOOAO 4#.4m EAO A kedad6mlock i OT C
pulsesto count through a full cycle (period). In applications wherethe frequency of thePWM

output signal is not critical and is constant, the timer/counter registermay befree-running, i.e.

it rolls over from its maximum count value to zeo and the full cycle repeats continuously Thus,

the PWM period will be (F_CPUPS_DIV) / 256, where PS_DIV is the psealer divide value.

YT O0&AOCO 07-06 11T AAR OEA 1 OO0 e&aéndourteE cydleXderiod),lid O (E
when the timer register value rolls over from 255 to 0.The PWM output pulse duty, i.e. pulse

width , isdetermined by theO/ OOP OO #1 1 DPAOA .WhAddhdtimer tedisteEvallieE O |
matches the Output Compare register value, the output signal goes Ldwour example, tie duty

is set bythenumberx OEOOAT ET OT / OODPOO # 1 ExpesedasaratigFn®@ OA O
pulse duty is simply the OCA registevalue divided by the number of timer clock in one cycle,

l.e. duty =(OCROA /256). Multiply this by 100 to express the duty as a percentage.

TCNTO
register
value
A
Top Count = TCNTO maximum value = 255
255
192 duty = OCROA valie =|192
COUNT
duty 5/OCROA value =64
64
0 >
0 256 512 .
Timer clocks
A
High
PWM
OUTPUT
Low
>
DUTY —— DUTY ——
—~—— PERIOD —— = |—<=——— PERIOD ——™

This diagram illustrates the Fast PWM mode of opetian. Note that the output pulse duty is

simply the ratio of OCROA register value to the period. 100% duty occurs with OCROA = 255

&1 O OAT EAAT A Ocl EOAE &£OAA6 TPAOAOGEITh EIT xAOAOI
timer register rolls over, i.e. immediately at the end of a cycl&his requirement is easily satisfied

by generating an interrupt on every timer @verflowd event. The associated interrupt service

routine (ISR) handles the update of the duty register, OCROA, simply by copying th&yvalue

from a global variablewhich may be modified anytime.The ISR takes care of synchronisation.

AVR C Tutorial (draft- wip).docx Page43 of 56 Last revised:4 July 2020

A timer setup function is required to do the following:

1 Select the requiredtimer module (TCO) and its mode of operation (Fast PWM);
1 Select the Output Cmpare match register (OCROA), which alsteterminesthe
I/O pin for the PWM output signal(PD6 = OCO0A)
1 Select the timer/counter clock source(internal CPU clock) and Prescaler divide
value togive an appropriate PWM frequency(period) for the output signal;
T %1 AAT A OEI AOT AI(@F)draptT OAOAI T x 6
1 Set an initial (default) value for the PWM duty (optional).
T OAPDPOI POEAOGA 07- AEOANOAT AUS6 xEII AADAlA [
I OEAO OPOI AAOGO Al 1 Gbbyith aseprtivélybHolv AWM frdquericE & EED
dimmer would need a frequency high enough to avoid perceptible flickeringout not exceeding
OEA , %380 OAODPI 1T OA -toaRdlodue cohverter \IAE)EwouldAnEeG B ©WW
frequency at least double the higest frequency in the audio range. Usually, one of the available
pre-scaler divide values will produce a PWM frequesy acceptable for the application.
(AOA EO Al AgAi Pl A OEIi AO OAOODP &£O1 AGET T 8
/*Functi on: TCO_Setup()

*

* This function initializes Timer -Counter TCOin 8 - bit Fast PWM mode
* to generate a variable - duty pulse waveform on pin OCOA (= PD6).
*
* Note: The application program must enable global interrupts to
* activate the ISR, he nce to generate a PW M output signal.
*/
void TCO_Setup()

{
TCCROA= 0b10000011; /I Fast PWM mode enabled on pin OC1A/PD6
TCCROB= 2; /[Pre -scaler=F CPU/8
OCROA= 0; I/l Load OCROA register for PWM duty =0
TCO_OVF_IRQ_ENABLE /I I nterrupt on timer CQverflow (OVF)

}

01 AAGA OAEAO O1 OEA ' 41 ARBQU4BADADERAIOOABGERDIO
description of Fast PWM mode. In particularseesection 15.91 underO2 ACEDOAOEBOET 1
Table 153, Table 158 and section 15.9.2 for details of timer confuration bits in control

registers TCCROA and TCCROB, whiate initialised in the above function.

The timer period, hence PWM output frequency is determined by the CPU cloftkquency
(#defined as F_CPU) and the prscaler divide value (3 LS bits ofegister TCCROB). The table
below shows the available options where F_CPU is 16 MHz.

TCCROB [2:0] Pre-scaler divisor PWM freq. (Hz)
1 1 62500.000
2 8 7812. 500
3 64 976.563
4 256 244141
5 1024 61.035

AVR C Tutorial (draft- wip).docx Page44 of 56 Last revised:4 July 2020

Here is the code for the ISR whicperforms the PWM duty register updaté&

/~k
* Timer - Counter TCO Interrupt Service Routine
*
* The timer will generate an IQR, hence this routine will be executed, when the
* timer registe r (T CND) rolls over from the MAX count value (255) to zero (0).
* On every timer overflow, t he PWM output pin (PD6/OCOA) will be set HIGH
*
* The PWM duty (set by register OCROA) is updated here.
* To avoid erratic PWM behaviour, OCROA must not be madalified anywhere else.
*/
ISR(TIMERO_OVF_vect)
{

}

OCROA= g_PWM_duty // Update duty from global variable

It is possible to set a arbitrary value for the PWM frequency using a timer mode in which the

period is set by one Output Compare registetCR®) while the PWM duty is set by the other

register (OCR®). In this mode, the timer count register will not overflow. The counter is reset
andthA AUAT A OAPAAOO xEAT AOGAO OEA AT 061 O OAI OA j .
in OCR&h OEA DPAEBFIBIOOGET OAOOODPO OANOAOGO EO AGAT AO
match which occurs at the end of every timer cycle.

For example, if the timerperiod is set to 250 (by writing 249 into register OCRM®) then the

available options for PWM output frequery will be as shownhere:

TCCROB [2:0] Pre-scaler divisor PWM freq. (Hz)
1 1 64,0 00
2 8 8,000
3 64 1,000
4 256 250

Again, he table showsPWM frequencies available with a CPU clock rate of 16 MHz. If using a
hardware platform with F_CPU = 8 MHz (e.the original AVRBED), then the PWM frequeacies
will be halved, of course.

The dutyregister value cannot be greater than the period. Consequently, for any given ggealer
setting, the resolution (accuracy) of the PWM duty depends on the period. In fattte resolution
is simply the reciprocal of the period. For example, if the periogiset to 250 (timer clocks), then
the duty resolution is 1/250 (= 0.004, or 0.4% FS)But if the period is set t0100 (giving a 2.5
increase in PWM frequency}hen the duty resolution drops to 1/100 (= 0.01, or 1% FS). Hence,
the resolution gets worseasthe PWM frequency increases (for any given precaler setting).

To greatly improve PWM duty resolution, a 16oit timer/counter module (TC1) may be used.
However, there is dways a tradeoff between PWM resolution andutput frequency.

There are not manyoptions for pre-scaler valuesFor audio signal generation, a output sample
rate (i.e. PWM frequency)n the range32kHz ~ 40kHz would be ideal. This cannot be achieved
in rast PWM mode without severely compromising the PWM duty resolution. The period
register (OCROA) would need to be set to 50 to obtain a PWM frequency of 4@kt$o the duty
resolution would be reduced to 1/50 E 2% FS)z the equivalent of a 6bit DAC @pprox..).

AVR C Tutorial (draft- wip).docx Page45 of 56 Last revised:4 July 2020

A work-around would be to reduce the system clock frequency to 8Nk, butdoing so would
compromise the CPU performance, of course. There is a better weaskound. Another mode of
operation of Timer TCOis known as (Phase Correct PWN (or (Dual Slop® counter mode).

Selecting this mode will result inthe PWM frequencybeing about half of trat using@ast PWN
mode, for the same Prescaler setting and Top Count value. For example, if tiee-scaledivisor

is set to 1 and theTop Count(OCROA) is set td 98, giving a PWM period o200 clocks, then the
PWM frequencywould be 40kHz and the duty resaition would be 1/200 (= 0.5% FS.

Lesson 4, Exercise?2 (a)

Write a simple program to test TCO Fast PWM mode using the setup function and ISR
presented above (Note: Thesefunctions are not provided in the AVRBED code library.)

Your program will need to declare a singlebyte global variable, g PWM_duty, which is
accessed by the ISR. Try initising this variable to various values in the range 0 to 255 and
observe the output waveform on an oscilloscope*Also try changingthe PWM frequency.

Lesson 4, Exercise2 (b)

Extend the program in Ex. 2 (a) so that a pair of pusbuttons (A and B) can baised to set
OEA 07- AOOU8 50A "OO6061I1T 016 OIEEGROCAADA 101
decrease the duty by 10%. Ensure the duty is limited to the range 0 to 100%.

The PWM duty is to be displayed on the LCD panel as a percentage. To avoid fliogethe
display should be updated only when the duty value changes.

The program may use library functions to detect button hits, as in an earlier exercise.

Lesson 4, Exercise?2 (c)

Modify the program in Ex. 2) so that the PWM duty is controlledby a pdentiometer
connected to pin PC3/ADC3. The pot sources a variable voltage ramgfrom 0 to +5V.

The pot ADC reading (decimal number) and PWM duty (percentage) are to be displayed on
the LCD panel. To avoid flickering, the display should be updated only arnthe duty value
changes.

*$1 180 EAOA AT 1T OAEI 11 Gowiidadhand inhstall tiggl Addio @da£8hA 2 4 |
software on your PC. The unrestricted trial version includes free audio oscilloscope and function

CAT AOAOT O Al O1 AOI Oiredds@8X inpatdo sid® thd tBoAnpuddhahdels
simultaneously. If youhave a laptop without an AUX input socket, there are lowost USBaudio
AAAPOAOO AOAEI AAT A EOIIT TTTETA OOPPI EAOO8 " Ax
20kHz. Puld x AOA &I Oi 6 AO MEOANOAT AEAO AAT OA -adef U xE
harmonics are filtered out.

AVR C Tutorial (draft- wip).docx Page46 of 56 Last revised:4 July 2020

Lesson 51 State Machine method in Software Design

General State-Machine Concept

The diagram below shows the essential elements of Gtate machined In a simple hardware
Ei b1 AT AT OAOET T h OEA OOOAOA OACE Qdd The numbeddf A A A
possible states is just 2 raised to the power N, where N is the number of flilops. In a complex
state machine having a very large number of states, the state register woulcexist in a memory
device of some sort Hardware statemachines are commonly implementedvith programmable

logic devices (CPLD, FPGA, etc).

Generalized State Machine

Inputs |:> ::> Outputs
(Events) (Actions)
LOGIC
f:{> —

Current Next
State State
STATE <}:
REGISTER
(Memory)

4 E fogic®d Al T AE input digha@ (whidh may be internal or exterrally generated)during

the current state to determine what output signalgactions) need to be generated and what state
transition (if any) needs to occur.

)y £ OEA Cohnbod@ge@®od &ndnput signal (event), itEO AAT 1T AA AT GAOUT /
machine. Some applicationsnay need all state changes to be synchronized to a clock signal, in
xEEAE AAOA EO EO shik maching. Input Sigddisiark &€0 byhdhrén@eéd to the

clock so that state changesan only occur on a clock transibn.

s o~ N PPN

The same general model applies to software state AAEET A AOAEEOAAOOOAS8 4t
simply a static (permanent) ET OACA O OAOEAAIT Ah AT T 111 ThestaleAl 1 A
variable has a finite number of valuesrepresenting valid states. For each possible state, the
program code tests the input conditions, generates outputs anith some caseschanges the state.

This happens continuously in an infinite loop

Probably the best way to explain how a softwag statemachine works is by anexample.
Count-down timer for switching AC appliance s

A digital timer is required for the purpose of switching off an A€powered cooking or heating
appliance, or maybea light, after a presettime has elapsedThe timer is to be started manually.
Such a deice might be used to turn off the heater in alothesdrying cabinet, or to ensure that a
deep-fryer or other electric cooking appliance is not accidentally left on after use.

AVR C Tutorial (draft- wip).docx Page47 of 56 Last revised:4 July 2020

A description] £ OEA OEI AO T PAOAOETT xEI 1 16A0OOA AO A

beeper. There are3 outputs: a signal to drive a relay which switches power to the AC apphce
an output for the status LEDand a signal to drivethe beeper (e.g. a PWM output)

4EA AOOOIT ~&EOTAOCEITO AOAd O(1 6OO06Hh O-ET OOAOGG N
7EAT EEOOO PI xAOAA OP 1 0 OAOAOh OEA AAGEAAMGAT (
using the Hours and Minutes buttonsThe ON-time is initially zero. While the hours settingstays

at zero, the Minutes button increments the ONime setting by 1 minute, up tol0 minutes, then
increments by5, up to 30 minutes, thereafter incrementig by 10 Whenever the Minutes setting

reaches 60, it is zeroed anthe Hours setting is incrementedOtherwise, f the Hours setting is
non-zero, the Minutes button adds 15 minutesThe Hours button addsl hour to the timer

setting, but the maximum setting is at 6 hours (6:00).

If the Stop/Reset button is pressed while irthe Setting state, the ONime is cleared (0:00).

The Start button, when pressedgauses the relay driver output to activateand the countdown

begins, provided of course that the ONime setting is nonzero. When the timer expires, i.e. when

the remaining time reaches zero, the relay output is dactivated and the beeper sounds for a

fixed time, say 5 seconds. The device thee-AT OAOO OEA O3 AOOETI ¢co6 OOAODA

If the Stop/Reset button is presed while the countdown is active, i.e. while the relay output is
active, the countdown is paused, i.e. stopped temporarilyand the output is deactivated. If the
same button is pressed again (while the courdown is paused) then the device resnters the
O3AO00ET Ccd OGinmbddearsdq@®on). OEA / .

If the Start button is pressed while the courndown is paused, the relay output is again energised
and the countdown continues.

While the relay driver output is active, the LED is litWhile the countdown is paused, the LED
flashes at 2Hz. Otherwise, the LED is off.

When the countdown timer reaches zero, the beeper is activated and asecond timer is started.
When the beeper timer expires, the beeper is turned off. However, the degicemains in this
state until the Stop/Resetbutton is pressed and then it revertdbackto the Setting state.

The tricky part of software statemachine design is identifying the optimum (usually also the
minimum) number of states required. In general, eac® OAOA EO OxAEOETI C6 A& O
to occur which might cause a transition t@nother state and/or a change in an output signal. The

xI OA OxAEOET Cd6 EO Enachii€shoGQidnéverkdudedddldytoanbthedi@sk O A

or (procesdwhichi ECEO 1T AAA O1 AA AQAAOOET ¢ OAIT 1T AOOOAIT
It is not unusual fa a software engineer to make changes to thexumber and/or purpose of

device states identified during product development However, it is preferablethat these
changes # made during the design phase of a project, before coding commences. The later a
change is made during the project, the more costly it is to implement the change.

Another test for the validity of a proposed state is whether or not it is mutually excluses/of other
states. Check if a proposed state already exists within another state, ondaination of states.

Exercise:

Before reading any further, try to identify what states you think would make
implementation of the appliancetimer straight-forward. Then compare your results with
the following states suggestedby the author.

AVR C Tutorial (draft- wip).docx Page48 of 56 Last revised:4 July 2020

A =~ 2 A

OOA0O8 4x1 1T OEAO OOAOGAO 'EgEo AA O/ . édrivedloic O/ & &
states. But, the OMime can only be set while the relay outptiis off. Doesthis mean that the
GAOOET co OOAOA EO OEA OAT A AO O/IPADOAAGAUADBDEAC
the output isalsoO/ & &6 h AOO OAOOEI ¢ EO 110 PAOIi EOOAAS

If we proceeded to design our state machine based on the aboveoades, we wouldsoon realize

OEAO OEA O/ &&06 OOAOA EO OAAOT AAT Oh Al OET OCE Ol
EO O/ &&06 xEAT OEA OEI A0 EO AAETI ¢ OAO jE8B8A8 EI
O3AO00ET Cco AT A DOBABDOADBOAOA AT OE O

There is yet another state where the timer has expiredthe output is offand the beeper is
sounding, before reentering the Setting state.

Hence, the machine can bienplemented using four major states:

Setting: Monitor button presses to set ONime, or to activate the appliance.

Active: Countdown is enabled, relay driver is energised; waiting for the
count-down timer to expire, or Stop/Reset buttonhit.

Paused: Countdown is suspended, relay driver is deactivated; waiting for
Stop/Reset or Startbutton hit.

Beeper: Beeper is sounding;waiting for expiry of beeper timer, then a button
press to exit

Setlingd——
CiClear L
Setting statexX Setting stateX
with hours and mingoth atzero. after Hours or Mins button pressed.

Active stateX Paused statX
waiting for timer expiry or Stop fiton press. waiting for Reset or Start button press.
Beeper statX

waiting for Reset button (after beep).

The only difference between the initial setting state (with time set at 0:00) and subsequent

setting state is theinformation displayed, i.ethe AOOOT 1T O1 AT 66 11 OEA Al C
you could split the setting state into two separate statds E 8 A& EMAIl 60)0I0AOA AT A A
xEAOA OEA O)T EOEAI 6 OOAOA EO AT OAOCAA 111U xEA’

AVR C Tutorial (draft- wip).docx Page49 of 56 Last revised:4 July 2020

