
___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 1 of 56 Last revised: 4 July 2020 

AVR Embedded C Tutorial 

A practical introduction to AVR embedded C programming for novices. 

Michael J. Bauer  
Swinburne University of Technology 

Melbourne, Australia 
____________________________________________________________________________________________________________ 
 

Foreword 

This is a self-study tutorial intended as a first course in embedded microcontroller programming 

using a sub-set of the C language called Ȱ#-ÌÅÓÓȱ ɉ# ÌÁÎÇÕÁÇÅ ÅÓÓÅÎÔÉÁÌÓɊȢ Ȱ#-ÌÅÓÓȱ ×ÁÓ conceived 

to provide enough of C to develop ȰÒÅÁÌ-×ÏÒÌÄȱ ÁÐÐÌÉÃÁÔÉÏÎÓȟ ×ÈÉÌÅ ÁÖÏÉÄÉÎÇ ÕÎÎÅÃÅÓÓÁÒÙ 

complex constructs which novices might find overwhelming. 

The software development environment (PC application) used in this tutorial is Atmel Studio 

IDE (version 7). This is a free download from AtmelȭÓ ɉÏÒ -ÉÃÒÏÃÈÉÐȭÓɊ ×ÅÂÓÉÔÅȢ  

Coding examples and exercises are targeted towards Atmel 8-bit AVR microcontroller devices, 

specifically the ATmega88PA or ATmega328P, as fitted on ÔÈÅ ÁÕÔÈÏÒȭÓ Ȱ!62-"%$ȱ ÁÎÄ Ȱ.ÁÎÏ-

"%$ȱ development platforms. Where the text reÆÅÒÓ ÔÏ Ȱ!4ÍÅÇÁψψ0!ȱȟ ÓÕÂÓÔÉÔÕÔÅ ÔÈÅ actual 

device type fitted on your board. Likewise, be sure to substitute the code library file -name 

applicable to your hardware platform. Refer to the Appendix at the end of this document for 

details of various AVR development board options. 

Many of the program examples in this tutorial use a pre-built function librar y to facilitate access 

to peripheral devices such as displays, timers, push-buttons, analogue inputs, etc. This approach 

avoids the need for a detailed understanding of peripheral driver code in the early stages of 

learning when the focus is on C language syntax. Later in the tutorial, the source code comprising 

library functions will be analysed for more advanced learning exercises. 

Students are encouraged tÏ ÒÅÆÅÒ ÔÏ ÔÈÅ ÃÏÍÐÁÎÉÏÎ Ȱ#-ÌÅÓÓ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱ ÏÆÔÅÎȟ ÔÏ 

understand better the C language elements and constructs used in the code examples here. 

Prerequisite Knowledge & Skills 

The course assumes a rudimentary  knowledge of Boolean logic and binary arithmetic. 

Practical skills in digital electronic circuits and systems incorporating microcontrollers, 

peripheral devices, etc, will be beneficial to learning embedded programming. 

References 

[1]  Ȱ#-less Reference Manualȱ (M.J. Bauer) ɀ Embedded C language subset 

[2]  ȰAVR-BED Development Boardȱ ɀ Article describing design and construction of a 

microcontroller development board used in the programming examples. 

[3]  Ȱ!62-"%$ ,ÉÂÒÁÒÙ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱ ɀ Peripheral function library 

[4] ATmega48/88/168 Data-sheet (Atmel document number: DS40002074A) 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 2 of 56 Last revised: 4 July 2020 

Lesson 1 ï Simple I/O port bit manipulation 

In this lesson, you will learn how to set up and use the microcontroller I/O port pins to drive one 

or two LEDs. The internal circuit of an I/O pin is actually quite complex, because it can be 

configured (by programming MCU registers) to serve a variety of different purposes. However, 

when we get to writing the code to switch a LED on or off, it appears much simpler. 

Before looking at the programming task, have a close look at the relevant sections of the 

ATmega88 datasheet in chapter 14: I/O-Ports, paying particular attention to section 14.2: Ports 

as general digital I/O (GPIO), starting on page 84. 

Summary of MCU registers associated with general -ÐÕÒÐÏÓÅ )Ⱦ/ ɉ'0)/Ɋ ÐÉÎÓȣ 

As shown in the datasheet, AVR microcontrollers incorporate a number of general-purpose  

8-bit input/output (I/O) ports , labelled A, B, C, D, etc. Each individual port pin (bit) can be set up 

independently to implement either an input signal or an output signal.  

Port pins are configured, written to and read from, through a set of 3 peripheral (I/O) registers, 

as follows: 

¶ Data Direction Register (DDR x) - Sets the signal direction (input or output) for each of 

the 8 I/O pins in the port (where x = A, B, C, D, ...).  A LOW (0) bit value in the DDR makes 

the corresponding I/O pin function as an input; a HIGH (1) bit value makes the pin 

function as an output. The DDR register data may be written to and read back, i.e. you can 

read the value stored in the DDR to test which bits are outputs and which are inputs. 

¶ Port Register (PORTx) - Sets the output state (logic level, High or Low) of up to 8 I/O 

pins when configured as outputs. PORT registers may be written into or read from.  

NB: Reading a PORT register does not capture the logic levels on the external pins ɀ the data 

read will be whatever was last written to the register. 

Pins which are configured as inputs (i.e. DDR bit is set to 0) are not affected by 

corresponding bits in the PORT register, except for the pull-up resistor function (see 

below for details). 

¶ PIN Register (PINx) - Reads the logic levels (High or Low) on all 8 pins of a port. For each 

pin, the actual voltage on the external pin is measured and translated to a logic level (High 

or Low) which appears in the PIN register to be read, regardless of whether the pin is 

configured as an input or output.  

If the pin voltage is between VIL(max) and VIH(min), i.e. neither Low nor High, then the 

bit value in the PIN register is indeterminate (could be 0 or 1). Writing to a PIN register 

will have no effect, because it is "read-only". 

Pull -up resistor facility  

I/O Pins which are configured as inputs (i.e. DDRx bit is set to 0) will have a pull-up resistor 

connected to +Vcc (High) if the corresponding bit(s) in the PORTx register are set HIGH (1); 

otherwise the pull-up is disconnected.  

Floating (unconnected) input pins should always have their pullup resistor enabled to avoid 

noise pickup which could result in MCU malfunction. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 3 of 56 Last revised: 4 July 2020 

Recap on I/O register  usage 

Regardless of the DDRx and PORTx register bit values, reading the PINx register will always give 

the actual logic states at the external pin. If the DDRx bit is high (1), the voltage on the pin will 

be affected by the output register PORTx bit  setting, so the input state may not be as expected. 

#ÁÒÅ ÍÕÓÔ ÂÅ ÔÁËÅÎ ÉÎ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎȭÓ )Ⱦ/ ÃÉÒÃÕÉÔ ÄÅÓÉÇÎ ÁÎÄ ÐÒÏÇÒÁÍ ÃÏÄÅ ÔÏ ÅÎÓÕÒÅ ÔÈÁÔ ÔÈÅÒÅ 

can be no contention between the PORTx register bit states and the external voltages applied to 

I/O pins for any pin(s) configured as output(s). 

Lastly, note that the internal pull-up resistor is enabled (connected) only when the pin is 

configured as an input (DDRx bit = 0) and the respective PORTx register bit is set high (1). 

Exercises 

1. After power-on/reset of the MCU, what value (0 or 1) will be in each bit of the registers: 

DDRC, PORTC and PIND? (Think carefully about PIND.) 

2. Port B is to be configured so that all pins are outputs. What bit values must be written 

into the registers DDRB and PORTB if the initial output states are to be Low (0)? 

3. Port D is to be configured so that pins PD2, PD3, PD4 and PD5 are inputs while the other 

4 pins are outputs. What bit values must be written into the register DDRD? The output 

pins are to be set LOW. What bit values must be written into the register PORTD? 

4. Continuing from exercise 3, it is further required to enable internal pullup resistors on 

the pins that have been configured as inputs. What bit values must be written into the 

register PORTD to enable the pull-ups, without affecting the output pin states? 

5. Continuing from exercise 4, assuming there are no external connections to any of the 

Port D pins, what bit values would be found in register PIND when it is read? 

6. Continuing from exercise 5, what bit values must be written into the register PORTD to 

set output pins PD6 and PD7 = High (1) without changing any other pin states? 

7. Continuing from exercise 6, what bit values would now be read from register PIND? 

8. Why is it a good idea to enable internal pull-ups on any unused (unconnected) pins? 

Next, we will learn how to write data into I/O  registers and read data out of them using C code. 

But first, ÌÅÔȭÓ ÇÅÔ ÓÔÁÒÔÅÄ ×ÉÔÈ !ÔÍÅÌ 3ÔÕÄÉÏȢ 

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 4 of 56 Last revised: 4 July 2020 

The programming environment ï Getting started with Atmel Studio (7) IDE 

Embedded microcontroller applications are usually developed on a host computer running 

Windows, Mac-OS or Linux. Programs are written, compiled and built (i.e. assembled into 

executable ȰÏÂÊÅÃÔ ÃÏÄÅȱɊ on the host computer using a software application called an 

ȰÉÎÔÅÇÒÁÔÅÄ ÄÅÖÅÌÏÐÍÅÎÔ ÅÎÖÉÒÏÎÍÅÎÔȱ (IDE). 

4ÈÅ ÅØÅÃÕÔÁÂÌÅ ÐÒÏÇÒÁÍ ɉÏÂÊÅÃÔ ÃÏÄÅɊ ÔÈÕÓ ÂÕÉÌÔ ÍÕÓÔ ÂÅ ÄÏ×ÎÌÏÁÄÅÄ ÉÎÔÏ ÔÈÅ ȰÔÁÒÇÅÔȱ ÍÉÃÒÏ-

controller device for testing. This is done uÓÉÎÇ Á ȰProgramming TÏÏÌȱ ×ÈÉÃÈ ÃÏÎÎÅÃÔÓ ÔÏ ÔÈÅ ÈÏÓÔ 

0# ÖÉÁ 53" ÁÎÄ ÔÏ ÔÈÅ ÔÁÒÇÅÔ ÄÅÖÉÃÅ ÕÓÉÎÇ ÁÎ ȰÉÎ-system proÇÒÁÍÍÉÎÇȱ ɉ)30Ɋ ÉÎÔÅÒÆÁÃÅȢ 4ÈÅ !62 

ÓÙÓÔÅÍ ÕÓÅÓ Á 0ÒÏÇÒÁÍÍÉÎÇ 4ÏÏÌ ËÎÏ×Î ÁÓ ÁÎ Ȱ!62)30 ÍË))ȱȢ 4ÈÅ )30 ÃÏÎÎÅÃÔÉÏÎ ÉÓ ÍÁÄÅ ÕÓÉÎÇ 

a 6-pin DIL header on the target board. 

Your first step is to download Atmel Studio 7 IDE and install it on your Windows PC or Mac. 

Start the application and create a new project ÂÙ ÃÌÉÃËÉÎÇ ÏÎ Ȱ.Å× 0ÒÏÊÅÃÔȱ ÉÎ ÔÈÅ ÓÔÁÒÔ-up 

window, which looks like this: 

 

A New Project pop-up window will appear, as shown below. Select Ȱ'cc # %ØÅÃÕÔÁÂÌÅ 0ÒÏÊÅÃÔȱ 

from the list of options. Replace the ÄÅÆÁÕÌÔ ÐÒÏÊÅÃÔ ÎÁÍÅ Ȱ'ÃÃ!ÐÐÌÉÃÁÔÉÏÎρȱ ×ÉÔÈ Á ÕÎÉÑÕÅ and 

appropriate name which will identify your project.  

CÈÅÃË ÔÈÅ ÂÏØ ÍÁÒËÅÄ Ȱ#ÒÅÁÔÅ ÄÉÒÅÃÔÏÒÙ ÆÏÒ ÓÏÌÕÔÉÏÎȱ is ticked. By default, the project folder will 

ÂÅ ÌÏÃÁÔÅÄ ÏÎ ÔÈÅ ÃÏÍÐÕÔÅÒȭÓ ÌÏÃÁÌ ÄÒÉÖÅ ÉÎ ÔÈÅ folder: C:\ Documents\ Atmel Studio\ 7.0\ . 

Optionally, you can choose a different location for the project folder and you can always copy the 

project folder to another directory or drive. )ÔȭÓ ×ÉÓÅ ÔÏ ÁÌ×ÁÙÓ ÍÁËÅ Á ÂÁÃËÕÐ ÃÏÐÙȢ 

#ÌÉÃË Ȱ/+ȱ ÁÎÄ ÁÎÏÔÈÅÒ ÐÏÐ-up ×ÉÎÄÏ× ×ÉÌÌ ÁÐÐÅÁÒ ÁÓËÉÎÇ ÆÏÒ ÔÈÅ ÔÁÒÇÅÔ ÄÅÖÉÃÅȢ 0ÕÔ Ȱψψȱ ÉÎ ÔÈÅ 

device name field, and then select ATMEGA88PA from the short list remaining, assuming your 

development board is based on this device. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 5 of 56 Last revised: 4 July 2020 

A project folder with the same name as the project will be created. Each project folder should 

contain all files associated with the project, i.e. project configuration files, C source file(s), header 

files, library files, object files, compiler and linker output files, etc, etc.  

NB: Do not rename any folder or file in the project folder outside of Atmel Studio (e.g. using 

Windows Explorer, File Manager, etc). Doing so will corrupt the project. If you want to rename 

the project folder, or any file therein, do it inside Atmel Studio. 

 

When a new project has been created successfully, Atmel Studio will create a C source file named 

ȰÍÁÉÎȢÃȱ ×ÉÔÈ Á ÍÉÎÉÍÁÌ ÐÒÏÇÒÁÍ ÆÒÁÍÅ×ÏÒËȟ ÁÓ shown below. 

/*  
 * C - lesson1 - ex1.c  
 *  
 * Created: 2019 - 12- 03 4:38:24 PM  
 * Author : user   <--  your name here  
 */   
 
#include  <avr/io.h>  
 
int  main( void )  
{  
    /* Replace with your application code */  
    while  (1)   
    {  
    }  
}  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 6 of 56 Last revised: 4 July 2020 

The code editor in !ÔÍÅÌ 3ÔÕÄÉÏ ÕÓÅÓ ȰÓÙÎÔÁØ ÈÉghÌÉÇÈÔÉÎÇȱ ɉÃÏÌÏÕÒÅÄ ÔÅØÔɊ ÔÏ ÅÎÈÁÎÃÅ ÒÅÁÄÁÂÉÌÉÔÙȢ 

For example, comments are shown in green. Comments are intended to provide information 

about a program, the functions comprising it and to explain the purpose of code which may not 

be obvious. Comments are ignored by the compiler. 

Keywords are coloured blue. These are reserved words which form the syntax of the language. 

LooËÉÎÇ ÁÔ ÔÈÅ ÐÒÏÇÒÁÍ ÁÂÏÖÅȟ ÔÈÅÒÅ ÉÓ Á ËÅÙ×ÏÒÄ ȰÉÎÃÌÕÄÅȱȟ ÐÒÅÆÉØÅÄ ÂÙ Á ÈÁÓÈ ÃÈÁÒÁÃÔÅÒ ɉΠɊȢ 

4ÈÉÓ ÉÓ Á ÃÏÍÐÉÌÅÒ ȰÄÉÒÅÃÔÉÖÅȱ ÔÅÌÌÉÎÇ ÔÈÅ ÃÏÍÐÉÌÅÒ ÔÏ ÉÎÃÌÕÄÅ ÔÈÅ ÆÉÌÅ ȰÉÏȢÈȱ ×ÈÉÃÈ ÒÅÓÉÄÅÓ ÉÎ Á 

system folder named ȰÁÖÒȱ somewhere in the Atmel Studio installation. This file contains, among 

other things, definitions of all MCU register names found in the ATmega88 datasheet. 

! # ÐÒÏÇÒÁÍ ÃÏÎÓÉÓÔÓ ÏÆ ÏÎÅ ÏÒ ÍÏÒÅ ȰÆÕÎÃÔÉÏÎÓȱ, all of which ÃÏÎÔÁÉÎ ȰÅØÅÃÕÔÁÂÌÅ ÓÔÁÔÅÍÅÎÔÓȱȢ  

An Ȱexecutable statementȱ is C code which, when compiled, generates microcontroller 

instructions. The full set of AVR microcontroller instructions can be found in the datasheet. Later, 

×ÅȭÌÌ ÌÏÏË ÁÔ ÈÏ× ÔÈÅ ÃÏÍÐÉÌÅÒ ÔÒÁÎÓÌÁÔÅÓ # ÃÏÄÅ ÉÎÔÏ ȰÎÁÔÉÖÅȱ ÃÏÄÅȟ ÉȢÅȢ Á ÌÉÓÔ ÏÆ ÉÎÓÔÒÕÃÔÉÏÎÓ ÔÈÁÔ 

the microcontroller can execute. 

%ÖÅÒÙ # ÐÒÏÇÒÁÍ ÍÕÓÔ ÈÁÖÅ ÏÎÅ ÆÕÎÃÔÉÏÎ ÎÁÍÅÄ ȰÍÁÉÎȱȢ /ÔÈÅÒ ÆÕÎÃÔÉÏÎÓȟ ÉÆ any, can be given 

made-up names. A function name is distinguished from other identifier names by placing a pair 

of round brackets after its name, as in ȰÍÁÉÎɉȣɊȱ.  

If there is no data to be input  ÉÎÔÏ Á ÆÕÎÃÔÉÏÎȟ ÁÓ ÉÎ ÔÈÅ ÃÁÓÅ ÏÆ ÍÁÉÎɉ Ɋȟ ÔÈÅ ËÅÙ×ÏÒÄ ȰÖÏÉÄȱ ÓÈÏÕÌÄ 

be written inside ÔÈÅ ÂÒÁÃËÅÔÓȢ 4ÈÅ ×ÏÒÄ ȰÖÏÉÄȱ ÉÓ ÏÐÔÉÏÎÁÌ ɀ it may be omitted. A function can 

ÁÌÓÏ ȰÒÅÔÕÒÎȱ Á ÖÁÌÕÅȢ 4ÈÅ ÍÁÉÎɉ Ɋ ÆÕÎÃÔÉÏÎ would return an integer value, if it ever return ed, but 

in this example it never returns.  

For the time being, just take it for granted that a function consists of its name followed by a pair 

of matching round brackets which may, or may not, contain a list of values to be passed into the 

function. Following the round brackets, preferably on a ne× ÌÉÎÅ ÉÓ ÁÎ ÏÐÅÎÉÎÇ ȰÃÕÒÌÙ ÂÒÁÃËÅÔȱȟ 

ÍÏÒÅ ÕÓÕÁÌÌÙ ÃÁÌÌÅÄ Á ȰÂÒÁÃÅȱȢ 4ÈÉÓ ÉÓ ÆÏÌÌÏ×ÅÄ ÂÙ ÓÏÍÅ ÌÉÎÅÓ ÏÆ # ÃÏÄÅȟ ÔÈÅÎ Á ÃÌÏÓÉÎÇ ȰÂÒÁÃÅȱȢ 

The closing brace marks the end of the function. The C code between the opening brace { and the 

closing brace } of a funcÔÉÏÎ ÉÓ ÃÁÌÌÅÄ ÔÈÅ ȰÆÕÎÃÔÉÏÎ ÂÏÄÙȱȢ 

! ÆÕÎÃÔÉÏÎ ÂÏÄÙ ÃÏÍÐÒÉÓÅÓ ɉÏÐÔÉÏÎÁÌÌÙɊ ÓÏÍÅ ȰÄÁÔÁ ÄÅÃÌÁÒÁÔÉÏÎÓȱ ÁÎÄ ȰÅØÅÃÕÔÁÂÌÅ ÓÔÁÔÅÍÅÎÔÓȱȢ 

There cannot be any executable statements outside of a function. There may be compiler 

ÄÉÒÅÃÔÉÖÅÓ ÁÎÄ ȰÄÁÔÁ ÄÅÃÌÁÒÁÔÉÏÎÓȱ ÏÕÔÓÉde functions. A Ȱdata declarationȱ is a statement which 

ÔÅÌÌÓ ÔÈÅ ÃÏÍÐÉÌÅÒ ÁÂÏÕÔ ÏÎÅ ÏÒ ÍÏÒÅ ÐÒÏÇÒÁÍ ȰÖÁÒÉÁÂÌÅÓȱȟ ÅÔÃȢ ɉ-ÏÒÅ ÁÂÏÕÔ ȰÖÁÒÉÁÂÌÅÓȱ ÌÁÔÅÒȢɊ 

The minimal program created by Atmel Studio for a new project contains only a main( ) function. 

Inside this ÆÕÎÃÔÉÏÎȟ ÔÈÅÒÅ ÉÓ Á Ȱ×ÈÉÌÅȱ ÌÏÏÐ, which is a C construct which repeats a group of 

statements placed between the matching braces. In the above program, there are no statements 

between the braces. That is where much ÏÆ ÙÏÕÒ ȰÁÐÐÌÉÃÁÔÉÏÎ ÃÏÄÅȱ ×ÉÌÌ ÂÅ ÐÌÁced. 

.ÏÔÅ ÔÈÁÔ ÔÈÅ ËÅÙ×ÏÒÄ Ȱ×ÈÉÌÅȱ ÉÓ ÉÍÍÅÄÉÁÔÅÌÙ ÆÏÌÌÏ×ÅÄ ÂÙ Á ÐÁÉÒ ÏÆ ÍÁÔÃÈÉÎÇ ÒÏÕÎÄ ÂÒÁÃËÅÔÓȟ ÉÎ 

this case containing the number 1. Inside the brackets, there can be any arithmetic expression. 

The statement(s) inside the loop body, i.e. between the curly braces, will be executed repeatedly 

so long as the expression inside the round brackets has a non-zero value. In our case, the 

expression has a constant value 1, which is always non-zero, so the loop will repeat forever.  

All embedded microcontroller applications use this basic structure, because they must run 

continuously (as long as the MCU is powered up). 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 7 of 56 Last revised: 4 July 2020 

Consolidation  

Now is a good time to consolidate some of the concepts introduced so far. Refer to the companion 

document Ȱ#-ÌÅÓÓ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱ [1] and study the following sections: 

¶ Comment ÂÌÏÃË ÁÎÄ ÃÏÍÍÅÎÔ ÌÉÎÅȣ (page 2) 

¶ Compiler pre-processor directives | #include <file>  ȣ ɉÐÁÇÅ 3) 

¶ Function definitionsȣ (page 7) 

¶ Loop constÒÕÃÔÓ ȿ ÔÈÅ Ȱwhile ȱ ÌÏÏÐ ȣ ɉÐÁÇÅ 13) 

 

First program  

/+ȟ ÎÏ× ÌÅÔȭÓ ×ÒÉÔÅ ÓÏÍÅ ÃÏÄÅ ÔÈÁÔ ÄÏÅÓ ÓÏÍÅÔÈÉÎÇ ÖÉÓÉÂÌÅȟ ÉȢÅȢ ÆÌÁÓÈ Á ,%$ ÏÎ ÁÎÄ ÏÆÆȢ 

The example code to follow assumes there is a LED wired to I/O pin  PB0 such that a logic High 

output state will turn  the LED on. 

In Atmel Studio, extend the outline program so that it looks like thisȣ 

/*  
 * C - lesson1 - ex1.c  
 *  
 * Created: 2019 - 12- 03 4:38:24 PM  
 * Author : user  <--  your name here  
 */   
 
#include  <avr/io.h>  
 
 
int  main( void )  
{  
    DDRB = 0b11111111;   // Set  up port B pins, all outputs  
 

while  (1)  
{  
    PORTB = 1;      // PB0 = 1 --  turn LED on  
    PORTB = 0;      // PB0 = 0 --  turn LED off  
}  

}  
 

Before entering the loop, port B is set up so that all 8 pins are outputsȢ 4ÈÅ ÓÔÁÔÅÍÅÎÔȣ 

DDRB = 0b11111111;  

sets all ÂÉÔÓ ÉÎ $$2" ɉÐÏÒÔ " ÄÁÔÁ ÄÉÒÅÃÔÉÏÎ ÒÅÇÉÓÔÅÒɊ ÔÏ ρȢ 4ÈÉÓ ÉÓ ÃÁÌÌÅÄ ÁÎ ȰÁÓÓÉÇÎÍÅÎÔȱ 

statement, where an expression, in this case a binary constant (1111 1111) is assigned to an I/O 

ÒÅÇÉÓÔÅÒȟ ÉÎ ÔÈÉÓ ÃÁÓÅ $$2"Ȣ $ÏÎȭÔ ÃÏÎÆÕÓÅ ÁÎ ÁÓÓÉÇÎÍÅÎÔ ÓÔÁÔÅÍÅÎÔ with an algebraic equality. 

4ÈÅ ȰÅÑÕÁÌÓȱ ÓÉÇÎ ɉЀɊ ÄÏÅÓ ÎÏÔ ÍÅÁÎ ȰÉÓ ÅÑÕÁÌ ÔÏȱ ɀ ÉÎ ÔÈÉÓ ÃÏÎÔÅØÔ ÉÔ ÍÅÁÎÓ ȰÁÓÓÉÇÎ ÖÁÌÕÅ ÔÏȱȢ 

Inside the loop, two statements have been added. The first sets bit 0 of register PORTB to 1 so 

that pin PB0 will assert a High state (approx. +5V) thereby turning the LED on. The second 

statement clears all bits in register PORTB, so that pin PB0 will assert a Low state (0V) thereby 

turning the LED off. The on-off sequence will repeat indefinitely. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 8 of 56 Last revised: 4 July 2020 

To test the program, first we need tÏ ȰÂÕÉÌÄȱ object code to be downloaded to the AVR board. The 

ÐÒÏÃÅÓÓ ÏÆ ȰÂÕÉÌÄÉÎÇȱ a project ÃÏÎÓÉÓÔÓ ÏÆ ÃÏÍÐÉÌÉÎÇ ÔÈÅ # ÓÏÕÒÃÅ ÃÏÄÅ ÄÏ×Î ÔÏ !62 ȰÁÓÓÅÍÂÌÙ 

ÌÁÎÇÕÁÇÅȱ ÃÏÄÅȟ ÔÈÅÎ ÁÓÓÅÍÂÌÉÎÇ ÔÈÉÓ ÉÎÔÏ executable ȰÏÂÊÅÃÔ ÃÏÄÅȱ ÉÎ Á ÆÏÒÍ ÔÈÁÔ ÃÁÎ ÂÅ ÌÏÁÄÅÄ 

and executed on the target microcontroller. Sounds complicated (and it is) but it all happens like 

magic with one or two mouse clicks in Atmel Studio. 

&ÒÏÍ ÔÈÅ ÍÅÎÕ ÂÁÒȟ ÓÅÌÅÃÔ "ÕÉÌÄȟ ÔÈÅÎ #ÏÍÐÉÌÅ ɉÏÒ ÐÒÅÓÓ #ÔÒÌϹ&χɊȢ 4ÈÉÓ ÓÔÅÐ ÄÏÅÓÎȭÔ ÂÕÉÌÄ ÏÂÊÅÃÔ 

code ɀ it just checks the syntax of the source code and reports any errors. If you get an error 

message, or warning, check your code for typos, etc.  

When the code compiles cleanly, proceed to build it. From the menu bar, select Build, then ȰBuild 

Solutionȱ (or simply press F7). 4ÈÅ ÏÕÔÐÕÔ ×ÉÎÄÏ× ÓÈÏÕÌÄ ÓÁÙ Ȱ"ÕÉÌÄ ÓÕÃÃÅÅÄÅÄȱȢ 9ÏÕ ÁÒÅ ÎÏ× 

ready to load the object code into your AVR board and run the program. 

How to load the program (object code) into the ATmega88 program memory  

Plug the programming tool (AVRISP mkII)  into a USB port on the host PC, if not already done. 

Connect the ISP ribbon-cable plug to the ISP header on your AVR board and power up the board. 

From the Tools menu, select Device Programming. Select the target device: ATMEGA88PA. Click 

the Apply button. You should see a slider to set the ISP Clock rate. (If not, the problem is most 

likely the USB driver is not installed properly.) Leave the ISP Clock set to 125kHz. Now click the 

Ȱ2ÅÁÄȱ ÂÕÔÔÏÎ ÕÎÄÅÒ $ÅÖÉÃÅ 3ÉÇÎÁÔÕÒÅȢ 4ÈÅ !62)30 ÓÈÏÕÌÄ ÆÅÔÃÈ ÁÎ )$ ÎÕÍÂÅÒ ÏÕÔ ÏÆ ÔÈÅ 

ATmega88 MCU and display it (6 hex digits). If it fails, there could be a fault in the ISP wiring.  

 

3ÅÌÅÃÔ Ȱ-ÅÍÏÒÉÅÓȱ ÆÒÏÍ ÔÈÅ ÌÅÆÔ ÓÉÄÅ ÍÅÎÕȢ 5ÎÄÅÒ ÔÈÅ ÈÅÁÄÉÎÇ Ȱ&ÌÁÓÈ ɉψ +"Ɋȱ ÔÈÅÒÅ ÉÓ Á ÆÉÅÌÄ 

showing the selected object file. Check that the correct file is shown. 

#ÌÉÃË ÔÈÅ Ȱ0ÒÏÇÒÁÍȱ ÂÕÔÔÏÎȢ 4ÈÅ ÐÒÏÇÒÁÍ ÓÈÏÕÌÄ ÄÏ×ÎÌÏÁÄ ÔÏ ÙÏÕÒ !62 board. When the 

download is finished, the program should start running. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 9 of 56 Last revised: 4 July 2020 

7ÈÁÔ ÄÏ ÙÏÕ ÓÅÅȩ 4ÈÅ ,%$ ÃÏÎÎÅÃÔÅÄ ÔÏ 0"π ÓÈÏÕÌÄ ÂÅ ÇÌÏ×ÉÎÇȢ "ÕÔ ×ÈÙ ÉÓÎȭÔ ÉÔ ÆÌÁÓÈÉÎÇȩ To 

answer this question, consider how fast the LED is being turned on and off. How long does it take 

to execute one iteration of the Ȭwhileȭ loop? You can measure the loop period using an 

oscilloscope on pin PB0. The LED on-off cycle is much faster than can be discerned by the human 

eye. To slow down the flash rate, we need to insert a time delay after the LED is turned on and 

again after it is turned off. )Î ÔÈÉÓ ÓÉÍÐÌÅ ÅØÁÍÐÌÅȟ Á ȰÓÏÆÔ×ÁÒÅ ÔÉÍÉÎÇ ÌÏÏÐȱ will  be used. 

3Ï ÌÅÔȭÓ ×ÒÉÔÅ Á ÆÕÎÃÔÉÏÎ ÔÏ ÉÍÐÌÅÍÅÎÔ Á ÔÉÍÅ ÄÅÌÁÙȢ &ÉÒÓt, choose a name for it. If we want a half-

ÓÅÃÏÎÄ ÄÅÌÁÙȟ ÔÏ ÇÉÖÅ Á ÆÌÁÓÈ ÒÁÔÅ ÏÆ ρ(Úȟ Á ÇÏÏÄ ÎÁÍÅ ×ÏÕÌÄ ÂÅ ȰdÅÌÁÙͺυππÍÓȱȢ 4ÈÅ ÆÕÎÃÔÉÏn 

definition might look something like this: 

 

void   delay_500ms( void )  
{  
 delay_counter  = 10000;     // Adjust this number to  get required delay  
 
 while  ( delay_counter  > 0)  
 {  
     delay_counter  = delay_counter  -  1;  
 }  
}  

 

The function embodies a Ȭ×ÈÉÌÅȭ ÌÏÏÐ ×ÈÉÃÈ repeatedly decrements a counter variable until it 

becomes zero. Before entering the loop, the counter variable is initialised to a value which will 

make the total execution time of the function about half a second. The initial counter value is 

determined by trial-and-ÅÒÒÏÒȢ ,ÅÔȭÓ ÓÔÁÒÔ ×ÉÔÈ Á ÖÁÌÕÅ ÏÆ ρπȟπππ ÁÎÄ ÓÅÅ ×ÈÁÔ ÔÈÅ ÄÅÌÁÙ ÔÉÍÅ ÉÓȢ 

4ÈÅÒÅȭÓ ÏÎÅ ÍÏÒÅ ÔÈÉÎÇ ÔÈÉÓ ÆÕnction needs to make it work. The variable delay_counter  has not 

yet been defined anywhere. In C, variables must be declared before being used in an expression. 

The following statement declares an unsigned integer variable. The AVR C compiler allocates 

two bytes (16 bits) of data memory to an integer variable. 

unsigned  int  delay_counter ;    // Variable , 16 - bit integer (unsigned)  

This statement must be placed outside of the function delay_500ms() so that delay_counter is 

ÁÌÌÏÃÁÔÅÄ ȰÐÅÒÍÁÎÅÎÔȱ ÓÔÏÒÁÇÅ ÉÎ ÔÈÅ -CU data memory. If the variable was declared inside the 

ÆÕÎÃÔÉÏÎȟ ÔÈÅÒÅÂÙ ÃÒÅÁÔÉÎÇ Á ȰÔÅÍÐÏÒÁÒÙȱ ÌÏÃÁÌ ÖÁÒÉÁÂÌÅȟ the function might not work, because the 

# ÃÏÄÅ ȰÏÐÔÉÍÉÓÅÒȱ ɉÐÁÒÔ ÏÆ ÔÈÅ GCC ȰÔÏÏÌÃÈÁÉÎȱɊ might think the function does nothing of any use 

and therefore might not generate any object code for it ! (Tricky things, code optimisers.) 

Functions must be declared or defined before being referenced elsewhere in a program. One way 

to satisfy this requirement is to place the function definition before any other function which 

references it, i.e. which Ȱcallsȱ it. In our example, we will place the code defining the function 

delay_500ms( ) ahead of main( ) in the source file. The complete program is listed below. 

! ÆÕÎÃÔÉÏÎ ÉÓ ȰÃÁÌÌÅÄȱ ɉÅØÅÃÕÔÅÄɊ ÓÉÍÐÌÙ ÂÙ ×Òiting its name followed by the pair of round 

brackets, as in the function definition. The bracket following a function name distinguishes it 

from variable names, etc. Note that it is good programming style not to put a space between the 

function name and the opening bracket. Elsewhere, spaces may be inserted to improve program 

readability. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 10 of 56 Last revised: 4 July 2020 

/*  
 * C - lesson1 - ex1.c  
 *  
 * Created: 2019 - 12- 03 4:38:24 PM  
 * Author : <name> 
 */  
 
#include  <avr/io.h>  
 
unsigned  int  delay_counter ;    // Variable used by function delay_ 500ms()  
 
void   delay_500ms( void )  
{  
 delay_counter  = 10000;     // Adjust this number to get required delay  
 
 while  ( delay_counter  > 0)  
 {  
   delay_counter  = delay_counter  -  1;  
 }  
}  
 
 
int  main( void )  
{  
 DDRB = 0b11111111;   // Set up port B pins, all outputs  
 
 while  (1)  
 {  
   PORTB = 1;        // PB0 = 1 --  turn LED on  
   delay_500ms();  
   PORTB = 0;        // PB0 = 0 --  turn LED off  
   delay_500ms();  
 }  

}  

Build this program, load the object code as before and run it. Is the LED now flashing at a 

perceptible rate, or still too fast? Measure the flash rate and adjust the initial value of 

delay_counter to achieve the desired flash rate, if possible. If the required delay time cannot be 

achieved using a 16-bit integer, try a 32-bit integer which is defined thus: 

unsi gned long  delay_counter ;  

Exercise 1 

Your next challenge is to flash two LEDs at different rates ɀ one flashing at 1Hz and the 

other at 2Hz. The second LED is to be driven from pin PB3.  

Hint: Draw a timing diagram showing the on-off states of both LEDs versus time, over a 

period of 1 second or so. What is the smallest time interval between any change of state? 

You will need a function to delay for this time interval. Write down the values that will need 

to be written to the PORTB register at every change of LED state. 

In your solution to the foregoing exercise, you probably wrote constant values into PORTB, 

changing the on-off states of one or both LEDs together. This is fine for a simple task like this, 

but in more complex applications where several I/O pins must be manipulated independently at 

arbitrary times, perhaps by different functions, we need a method to manipulate one or more 

register bits without affecting other bits. This will be addressed in a later section, but first... 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 11 of 56 Last revised: 4 July 2020 

Registers, variables and constants  in  the C language   

)Î ÔÈÅ !62 ÓÙÓÔÅÍȟ -#5 ÒÅÇÉÓÔÅÒÓ ÁÒÅ ȰÍÁÐÐÅÄȱ ÉÎÔÏ ÔÈÅ ÍÅÍÏÒÙ ÄÁÔÁ ÓÐÁÃÅȟ ÓÏ ÔÈÅÙ ÃÁÎ ÂÅ 

accessed in the same manner as program variables. All MCU registers have pre-defined names ɀ 

you cannot (well alright, you can, but you sÈÏÕÌÄÎȭÔɊ ÍÁke up your own names for registers. 

(Later, we might look at how and why you might want to do that.) Meanwhile, register names 

ÁÒÅ ÄÅÆÉÎÅÄ ÉÎ Á ȰÈÅÁÄÅÒȱ ÆÉÌÅ ɉÁÖÒȾÉÏȢÈɊ ×ÈÉÃÈ ÍÕÓÔ ÂÅ ÉÎÃÌÕÄÅÄ ÉÎ ÙÏÕÒ ÐÒÏÇÒÁÍ ÓÏÕÒÃÅ ÆÉÌÅɉÓɊȢ 

Register bits may be best manipulated using binary or hexadecimal values. A binary number is 

ÒÅÐÒÅÓÅÎÔÅÄ ÉÎ # ÂÙ ÁÄÄÉÎÇ Á ÐÒÅÆÉØ ȰπÂȱ ÏÒ Ȱπ"ȱȢ ! ÈÅØ ÎÕÍÂÅÒ ÉÓ ÐÒÅÆÉØÅÄ ×ÉÔÈ ȰπØȱ ÏÒ Ȱπ8ȱȢ 

Examples of binary constants: 0b0 (= 0), 0b11 (= 3), 0b101 (= 5), 0b1000 (= 8), 0b1111 (=15), 

0b10000000 (= 128) and 0b11111111 (=255), if unsigned.  

The hexadecimal equivalents are: 0x0 (= 0), 0x3 (= 3), 0x5 (= 5), 0x8 (= 8), 0xF (=15),  

0x80 (= 128) and  0xFF (=255), if unsigned. 

In C, an 8-ÂÉÔ ÖÁÒÉÁÂÌÅ ÉÓ ÃÒÅÁÔÅÄ ÕÓÉÎÇ ÔÈÅ ËÅÙ×ÏÒÄ ȰÃÈÁÒȱȟ Óhort fÏÒ ȰÃÈÁÒÁÃÔÅÒȱ ɉÂÅÃÁÕÓÅ an 

ASCII character is represented by an 8-bit code). 

A variable in C is created by declaring its data type and giving it a name. The data type can be 

ȰÃÈÁÒȱ ÆÏÒ ÁÎ ψ-bit numberȟ ȰÉÎÔȱ ÆÏÒ ÁÎ ÉÎÔÅÇÅÒ ɉÔÈÅ ÓÉÚÅ ÉÓÎȭÔ ÓÔÁÎÄÁÒÄÉÚÅd, except that integers 

are always bigger than 8 bits, typically 16 bits in compilers for Ȱlow-endȱ microcontroller s). 

/ÔÈÅÒ ÃÏÍÍÏÎ ÄÁÔÁ ÔÙÐÅÓ ÁÒÅ ȰÌÏÎÇȱ ÆÏÒ σς-ÂÉÔ ÉÎÔÅÇÅÒÓ ÁÎÄ ȰÆÌÏÁÔȱ ÆÏÒ ÆÌÏÁÔÉÎÇ-point (real) 

numbers having an integer and fractional part and a huge range of magnitude. 

Examples: 

char  output_bits;  Define an 8-ÂÉÔ ÖÁÒÉÁÂÌÅ ÎÁÍÅÄ ȰÏÕÔÐÕÔͺÂÉÔÓȱ 

char  input_bits;  Define an 8-ÂÉÔ ÖÁÒÉÁÂÌÅ ÎÁÍÅÄ ȰÉÎÐÕÔͺÂÉÔÓȱ 

A variable declaration, as above, is a Ȱsimpleȱ C statement. The semi-colon at the end of each 

ÓÉÍÐÌÅ # ÓÔÁÔÅÍÅÎÔ ÉÓ ÅÓÓÅÎÔÉÁÌȣ ÉÔ ÔÅÌÌÓ ÔÈÅ # ÃÏÍÐÉÌÅÒ ×ÈÅÒÅ ÔÈÅ ÓÔÁÔÅÍÅÎÔ ÅÎÄÓ. The compiler 

ÉÇÎÏÒÅÓ Ȱ×ÈÉÔÅ ÓÐÁÃÅȱȟ ÉȢÅȢ ÓÐÁÃÅÓȟ new lines, blank lines, tabs (indents), ÅÔÃȢ (Ï×ÅÖÅÒȟ Ȱ×ÈÉÔÅ 

ÓÐÁÃÅȱ ÍÁÙ ÂÅ ɉand should be) used to improve source code readability. 

Variable names may be any length from 1 to 40 characters or more, using a mix of lower-case 

letters, upper-case letters, numeric digits (0 to 9) and underscores. It is conventional to use 

mostly lower-ÃÁÓÅ ÌÅÔÔÅÒÓ ÉÎ ȰÏÒÄÉÎÁÒÙȱ ÖÁÒÉÁÂÌÅ ÎÁÍÅÓ, using upper-case letters and/or 

underscores to separate words within a name, e.g. ȰÍÁØ4emp2ÅÁÄÉÎÇȱȢ $Ï ÎÏÔ ÕÓÅ Á ÃÁÐÉÔÁÌ ÌÅÔÔÅÒ 

or underscore for the initial character. 

$ÁÔÁ ÔÙÐÅÓ ÍÁÙ ÂÅ ȰÑÕÁÌÉÆÉÅÄȱ by adding another keyword in front of the type specifier. Common 

ÑÕÁÌÉÆÉÅÒÓ ÁÒÅ ȰÓÉÇÎÅÄȱȟ ȰÕÎÓÉÇÎÅÄȱȟ ȰÓÈÏÒÔȱ ÁÎÄ ȰÌÏÎÇȱ. Where a qualifier is used on an integer 

ÔÙÐÅȟ ÔÈÅ ËÅÙ×ÏÒÄ ȰÉÎÔȱ ÉÓ ÉÍÐÌÉÅÄ ÁÎÄ ÍÁÙ ÂÅ ÏÍÉÔÔÅÄȢ )ÎÔÅÇÅÒÓ ÁÒÅ ÓÉÇÎÅÄ ÂÙ ÄÅÆÁÕÌÔȟ ÓÏ ÙÏÕ ÃÁÎ 

omit the ȰÓÉÇÎÅÄȱ ÑÕÁÌÉÆÉÅÒȢ .ÏÔ ÓÏ ÆÏÒ ȰÃÈÁÒȱȣ ÔÈÅ default is not standardised, so if it matters, use 

a qualifier ɀ ȰÓÉÇÎÅÄȱ ÏÒ ȰÕÎÓÉÇÎÅÄȱ ɀ ÂÅÆÏÒÅ ȰÃÈÁÒȱȢ 

Examples: 

int   ival ;  Define a signed ÉÎÔÅÇÅÒ ÖÁÒÉÁÂÌÅ ÎÁÍÅÄ ȰÉÖÁÌȱ 

unsigned  uval ;  Define an unsigned ÉÎÔÅÇÅÒ ÎÁÍÅÄ ȰÕÖÁÌȱ 

short   iword ;  Define signed ÓÈÏÒÔ ÉÎÔÅÇÅÒ ɉρφ ÂÉÔɊ ÎÁÍÅÄ ȰÉ×ÏÒÄȱ 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 12 of 56 Last revised: 4 July 2020 

unsigned  short  word16;  $ÅÆÉÎÅ ÕÎÓÉÇÎÅÄ ÓÈÏÒÔ ÉÎÔÅÇÅÒ ɉρφ ÂÉÔɊ ÎÁÍÅÄ Ȱword16ȱ 

long   i val32 ;  $ÅÆÉÎÅ ÓÉÇÎÅÄ ÌÏÎÇ ÉÎÔÅÇÅÒ ɉσς ÂÉÔɊ ÎÁÍÅÄ ȰiÖÁÌσςȱ 

unsigned long  uval32 ;  $ÅÆÉÎÅ ÕÎÓÉÇÎÅÄ ÌÏÎÇ ÉÎÔÅÇÅÒ ɉσς ÂÉÔɊ ÎÁÍÅÄ ȰÕÖÁÌσςȱ 

Note that the size of an unqualified ȰÉÎÔȱ ÖÁÒÉÁÂÌÅ (e.g. ival, uval, above) depends on the compiler 

being used. You can find out the size from the compiler manual, but it is bad practice to make 

your code dependent on a particular compiler. Try to make your ÃÏÄÅ ȰÐÏÒÔÁÂÌÅȱȟ ÓÏ ÉÔ ×ÉÌÌ ÒÕÎ 

reliably on any platform. 

Now that we know how to create variables in memory, letȭs look at how values can be assigned 

to variables and how values can be copied from one variable to another. These operations are 

done with a ÓÉÍÐÌÅ # ÓÔÁÔÅÍÅÎÔ ÃÁÌÌÅÄ ÁÎ ȰÁÓÓÉÇÎÍÅÎÔ ÓÔÁÔÅÍÅÎÔȱȢ The C language uses the 

ȰÅÑÕÁÌÓȱ ÓÉÇÎ ɉЀɊ ÁÓ ÔÈÅ ÁÓÓÉÇÎÍÅÎÔ ȰÏÐÅÒÁÔÏÒȱȢ $ÏÎȭÔ ÃÏÎÆÕÓÅ ÁÎ ÁÓÓÉÇÎÍÅÎÔ ×ÉÔÈ ÁÎ ÁÌÇÅÂÒÁÉÃ 

ÅÑÕÁÔÉÏÎ ×ÈÅÒÅ ÔÈÅ ÅØÐÒÅÓÓÉÏÎÓ ÏÎ ÅÉÔÈÅÒ ÓÉÄÅ ÏÆ ÔÈÅ ȰÅÑÕÁÌÓȱ ÓÉÇÎ ÍÕÓÔ ÂÅ ÉÄÅÎÔÉÃÁÌ in value.  

In Cȟ ÔÈÅ ÁÓÓÉÇÎÍÅÎÔ ÓÔÁÔÅÍÅÎÔ ÉÓ ÕÓÅÄ ÔÏ ÅÖÁÌÕÁÔÅ ÁÎ ÅØÐÒÅÓÓÉÏÎ ÏÎ ÔÈÅ ÒÉÇÈÔ ÓÉÄÅ ÏÆ ÔÈÅ ȰÅÑÕÁÌÓȱ 

sign and copy that value into a variable on the left side. 

In the following example, the expression on the RHS of the operator (=) is simply a numeric 

constant. The variable on the LHS will be assigned the value of the constant (15). 

bits = 15 ;  !ÓÓÉÇÎ ÖÁÌÕÅ ρυ ÔÏ ÖÁÒÉÁÂÌÅ ȱÂÉÔÓȱ 

/+ȟ ÎÏ× ÌÅÔȭÓ ÍÏÄÉÆÙ ÔÈÅ ÖÁÌÕÅ ÏÆ ȰÂÉÔÓȱȢ )Î ÔÈÉÓ ÅØÁÍÐÌÅȟ ×ÅȭÌÌ ÁÄÄ ρπ ÔÏ ÉÔȢ 

bits = bits + 10 ;  Add value 10 to variable ȱÂÉÔÓȱ 

#ÌÅÁÒÌÙȟ ÔÈÉÓ ÓÔÁÔÅÍÅÎÔ ÉÓ ÁÌÇÅÂÒÁÉÃ ÎÏÎÓÅÎÓÅȢ "ÕÔ ÔÈÉÓ ÉÓÎȭÔ ÁÌÇÅÂÒÁȣ ÉÔȭÓ Á ÐÒÏÇÒÁÍÍÉÎÇ ÌÁnguage 

where the RHS expression is evaluated: 15 + 10 = 25 and the value (25) is assigned back to the 

variable. So, ÁÆÔÅÒ ÅØÅÃÕÔÉÏÎ ÏÆ ÔÈÅ ÓÔÁÔÅÍÅÎÔȟ ȰÂÉÔÓȱ will have the value 25. 

How to manipulate individual bits in a register or variable  

To change the state of one bit in a register or variable, without affecting any other bits, a 

ÔÅÃÈÎÉÑÕÅ ÃÁÌÌÅÄ ȰÂÉÔ ÍÁÓËÉÎÇȱ ÉÓ ÏÆÔÅÎ ÕÓÅÄȢ &ÉÒÓÔȟ ÔÈÅ ÒÅÇÉÓÔÅÒ ÖÁÌÕÅ ÉÓ ÒÅad out. This value is 

ÔÈÅÎ ȰÍÁÓËÅÄȱ ÔÏ ÓÉÎÇÌÅ ÏÕÔ ÔÈÅ ÂÉÔ ÔÈÁÔ ÎÅÅÄÓ ÔÏ ÂÅ ÕÐÄÁÔÅÄȢ  

If a single bit ÉÓ ÔÏ ÂÅ ÓÅÔ (ÉÇÈ ɉρɊȟ ÔÈÅ ȰÂÉÔÍÁÓËȱ ÉÓ Á ÃÏÎÓÔÁÎÔ ×ÉÔÈ ÏÎÌÙ ÏÎÅ ÂÉÔ ÓÅÔ (ÉÇÈȢ 4ÈÅ 

ÒÅÇÉÓÔÅÒ ɉÏÒ ÖÁÒÉÁÂÌÅɊ ÖÁÌÕÅ ÉÓ ÌÏÇÉÃÁÌÌÙ /2ȭÄ ×ÉÔÈ ÔÈÅ ÂÉÔÍÁÓË ÕÓÉÎÇ ÔÈÅ ȰÂÉÔ×ÉÓÅ /2ȱ ÏÐÅÒÁÔÏÒȢ 

The result is then written back to the register or variable. 

Example: Set bit 7 in a byte variable, output_bits. 

output_bits = output_bits | 0b10000000;   // only bit 7 is set High  

Conversely, if we want to clear a single bit in a variable, i.e. set it to zero (0), the bitmask has all 

bits High (1) except for the bit position to be cleared, which is zero (0). 

4Ï ÃÌÅÁÒ Á ÓÉÎÇÌÅ ÂÉÔȟ ÔÈÅ ÒÅÇÉÓÔÅÒ ɉÏÒ ÖÁÒÉÁÂÌÅɊ ÖÁÌÕÅ ÉÓ ÌÏÇÉÃÁÌÌÙ !.$ȭed with the inverse bitmask 

ÕÓÉÎÇ ÔÈÅ ȰÂÉÔ×ÉÓÅ !.$ȱ Ïperator. The result is then written back, as before. 

Example: Clear (zero) bit 5 in a byte variable, output_bits. 

output_bits = output_bits & 0b11011111;   // only bit 5 is zeroed  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 13 of 56 Last revised: 4 July 2020 

It is more usual to always express bitmasks with all bits zero (0) except the bit(s) that need to 

be modified. So, when a bitmask is used to clear selected bit(s), we need to use the complement 

ɉÁÌÓÏ ËÎÏ×Î ÁÓ ÔÈÅ ȰÉÎÖÅÒÓÅȱɊ ÏÆ ÔÈÅ ÂÉÔÍÁÓË ÖÁÌÕÅ ×ÉÔÈ ÔÈÅ ÂÉÔ×ÉÓÅ !.$ ÏÐÅÒÁÔÏÒȟ ÁÓ ÆÏÌÌÏ×Óȡ 

output_bits = output_bits & ~ 0b0010000;  // only bit 5 is zeroed  

)Î ÔÈÅ ÁÂÏÖÅ ÓÔÁÔÅÍÅÎÔȟ ÔÈÅ ȰÂÉÔ×ÉÓÅ ÃÏÍÐÌÅÍÅÎÔȱ ÏÐÅÒÁÔÏÒ ɉͯɊ És prefixed to the bitmask. This 

ÏÐÅÒÁÔÏÒ ȰÆÌÉÐÓȱ ÁÌÌ ÂÉÔÓ ÉÎ ÔÈÅ ÏÐÅÒÁÎÄ ɉÂÉÔÍÁÓËɊȟ ÉȢÅȢ ÁÌÌ ÂÉÔÓ ÁÒÅ ÉÎÖÅÒÔÅÄȢ 4ÈÅ ȰÂÉÔ×ÉÓÅ 

complementȱ ÏÐÅÒÁÔor must not be confused with tÈÅ Ȱ"ÏÏÌÅÁÎ ɉÌÏÇÉÃÁÌɊ ./4ȱ ÏÐÅÒÁÔor which is 

an exclamation mark (!). ThÅ Ȱ"ÏÏÌÅÁÎ ./4ȱ operator will be explained in a later section dealing 

×ÉÔÈ ȰÃÏÎÄÉÔÉÏÎÁÌ ÅØÐÒÅÓÓÉÏÎÓȱȢ 

3ÅÅ !ÐÐÅÎÄÉØ ! ÏÆ ÔÈÅ Ȱ#-ÌÅÓÓ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱ ÆÏÒ Á ÃÏÍÐÌÅÔÅ ÌÉÓÔ ÏÆ # ÏÐÅÒÁÔÏÒÓ. 

Exercises 

1. Write a C statement to set bit 0 of register DDRD to 1 without affecting other bits. 

2. Write a C statement to set both bit 0 and bit 1 of register PORTB to 1. 

3. Write a C statement to clear bit 0 of register PORTB. 

4. Write a C statement to clear both bit 2 and bit 3 of register PORTB. 

5. Write a C statement to clear bit 7 and set bit 6 of PORTB at the same time. 

6. Write a C statement to invert (flip) only bit 3 of register DDRC. 

ɉ(ÉÎÔȡ )ÎÖÅÓÔÉÇÁÔÅ ÔÈÅ ÂÉÔ×ÉÓÅ Ȱ%ØÃÌÕÓÉÖÅ-/2ȱ ÏÐÅÒÁÔÏÒȢɊ 

Using the ȬShift Leftȭ operator (<<) to create a bitmask  

4ÈÅ ȬÓÈÉÆÔ ÌÅÆÔȭ ÏÐÅÒÁÔÏÒ ÍÏÖÅÓ ÂÉÔÓ ÉÎ ÁÎ ÉÎÔÅÇÅÒ ÃÏÎÓÔÁÎÔ ÏÒ ÖÁÒÉÁÂÌÅȟ ÓÈÉÆÔÉÎÇ ÔÈÅÍ Á ÓÐÅÃÉÆÉÅÄ 

number of bit places to the left. The following assignment statement shifts the constant 1 left by 

ȬÎÂȭ ÂÉÔ ÐÌÁÃÅÓ ÁÎÄ ×ÒiÔÅÓ ÔÈÅ ÒÅÓÕÌÔ ÔÏ Á ÖÁÒÉÁÂÌÅ ȬÏÕÔÂÉÔÓȭȣ 

outbits = 1 << nb;  

The RH expression (1 << nb ) evaluates to a number which will have one bit set high (1) and all 

other bits cleared (0). The bit position containing the single ÈÉÇÈ ÂÉÔ ÉÓ ÓÉÍÐÌÙ ȬnbȭȢ (ÅÎÃÅȟ ÉÆ ×Å 

want to make a constant with bit 4 set high, we use the expression (1 << 4). If we want to make 

a constant with bit 7 set high, we use the expression (1 << 7). And so on. 

This technique is commonly used to represent Á ȰÂÉÔÍÁÓËȱ ÉÎ ×ÈÉÃÈ ÏÎÌÙ ÏÎÅ ÂÉÔ ÉÓ ÓÅÔ high. So, 

instead of writing a binary constant in the form 0b00010000, we can write (1 << 4 ) which shows 

more clearly which bit is set high, i.e. bit 4. Note that this works for bit zero as well. 

Example:  Set bit 0 in a byte variable, output_bits. 

output _bits = output_bits | (1 << 0);    // bit 0 is set High  

Example:  Set bit 7 in register PORTB. 

PORTB = PORTB | (1 << 7);    // bit 7 is set High  

Example:  Clear bit 5 in a byte variable, output_bits. 

output_bits = output_bits & ~( 1 << 5 );    // bit 5 is cl eared  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 14 of 56 Last revised: 4 July 2020 

Using a bitmask  to test the value of a single bit of a register or variable  

To determine if a given bit within a register or variable is High (1) or Low (0), a bitmask is 

defined with the bit position in question set to 1 and all other bits cleared. A Boolean expression 

is obtained by ANDȭÉÎÇ all the register (or variable) bits with the bitmask. For example, to 

determine the value of bit 3 in the input register of port D, PIND, ÔÈÅ ÅØÐÒÅÓÓÉÏÎ ÉÓȣ 

( PIND & (1  << 3))  

Using the ȰÂÉÔ×ÉÓÅ !.$ȱ ÏÐÅÒÁÔÏÒ ɉǪɊȟ aÌÌ ψ ÂÉÔÓ ÉÎ ÒÅÇÉÓÔÅÒ 0).$ ÁÒÅ ÌÏÇÉÃÁÌÌÙ !.$ȭÅÄ ×ÉÔÈ 

corresponding bits in the bitmask, so that all bits of the result except bit-3 will  be zero. Bit-3 of 

the result will be 1 only if bit-3 of register PIND is also 1;  otherwise bit-3 of the result will be 

zero. (Imagine bit-3 of PIND and bit-3 of the bitmask are fed into a 2-input AND gate. Both inputs 

must be High to get a High level at the output of the gate.) 

In C, "ÏÏÌÅÁÎ ÅØÐÒÅÓÓÉÏÎÓ ÅÖÁÌÕÁÔÅ ÔÏ ÅÉÔÈÅÒ Ȱtrueȱ ÏÒ Ȱfalseȱȟ ×ÈÅÒÅ Ȱtrueȱ ÉÓ ÒÅÐÒÅÓÅÎÔÅÄ Ây any 

non-zero value ɉÉÎÃÌÕÄÉÎÇ ÎÅÇÁÔÉÖÅ ÖÁÌÕÅÓɊ ÁÎÄ Ȱfalseȱ ÉÓ ÒÅÐÒÅÓÅÎÔÅÄ ÂÙ ÚÅÒÏ ɉπɊȢ The value of a 

Boolean expression can be tested using an Ȱifȱ ÓÔÁÔÅÍÅÎÔȟ ÁÓ ÆÏÌÌÏ×Óȡ 

if  ( PIND & (1  << 3))   button_state = 1;    // pin PD3 is High (1)  

if  ( ( PIND & (1  << 3))  == 0)  button_state = 0;    // pin PD3 is Low (0)  

4ÈÅ ÓÔÁÔÅÍÅÎÔ ÉÍÍÅÄÉÁÔÅÌÙ ÆÏÌÌÏ×ÉÎÇ ÔÈÅ ȰÉÆȱ ÃÏÎÄÉÔÉÏÎ ɉ"ÏÏÌÅÁÎ ÅØÐÒÅÓÓÉÏÎɊ ×ÉÌÌ ÂÅ ÅØÅÃÕÔÅÄ 

only if the condition is true (non-zero). Note in this case that, if true, the value of the Boolean 

expression is not 1;  it is 0000 1000 (binary), i.e. bit-3 is 1, so the following statement would fail 

to produce the intended outcome: 

if  ( ( PIND & (1  << 3))  == 1)  button_state = 1;    // <!> WRONG <!> 

We will take a more in-ÄÅÐÔÈ ÌÏÏË ÁÔ ÔÈÅ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔ ÁÎÄ its various forms in a later section. 

Meanwhile, the above description should be enough for you to have a go at the next exerciseȣ 

Lesson 1, Exercise 2 

Extend the program you created in Exercise 1 so that another LED ɉÌÅÔȭÓ ÓÁÙ ,%$χɊ ×ÉÌÌ ÂÅ 

illuminated  if push-button [A] is pressed; otherwise the LED will be OFF. The Button [A] is 

connected to port D, pin PD2. Operation of the push-button must not disrupt the normal 

flashing cycle of the two other LEDs and vice-versa. 

Note:  The 4 push-buttons on the AVR-B%$ ÈÁÖÅ Ȱ!ÃÔÉÖÅ ,Ï×ȱ ÉÎÐÕÔÓȟ ÍÅÁÎÉÎÇ ÔÈÁÔ ÁÎ ÉÎÐÕÔ 

pin is driven Low (0) while a button is pressed. Somehow, the input pin must be driven 

High while the button is released. The AVR-BED has no pull-up resistors wired to the 

button inputs.  You might need to refresh your knowledge of GPIO pin operation, covered 

in Lesson 1, and/or consult the ATmega88 datasheet. 

 

  

 

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 15 of 56 Last revised: 4 July 2020 

Lesson 2 ï Arithmetic and Logic Operations in C 

This lesson aims to show how to write C code to perform integer arithmetic and bitwise logic 

operations, including conversion of numeric data to printable characters in binary, hexadecimal 

and decimal number bases. 

4Ï ÓÅÅ ÔÈÅ ÒÅÓÕÌÔÓ ÏÆ ÔÈÅÓÅ ÏÐÅÒÁÔÉÏÎÓȟ ×ÅȭÌÌ ÎÅÅÄ Á ÄÉÓÐÌÁÙ ÄÅÖÉÃÅȢ 4ÈÅ !62-BED has a 2-line by 

16 character LCD module interfaced to the ATmega88 MCU as shown in Fig. 2.1 below.  If you 

are using another hardware platform such as the AVR-BED..ÁÎÏ ÏÒ !ÔÍÅÌ Ȱ8-ÍÉÎÉȱ board, refer 

to the relevant documentation to connect an LCD module. 

Fig 2.1  AVR-BED Schematic (simplified) showing LCD signal connections 

3ÉÎÃÅ ÔÈÉÓ ÌÅÓÓÏÎ ÉÓ ÎÏÔ ÃÏÎÃÅÒÎÅÄ ×ÉÔÈ ÔÈÅ ȰÌÏ×-ÌÅÖÅÌȱ ÃÏÄÅ ÎÅÅÄÅÄ ÔÏ ÄÒÉÖÅ ÔÈÅ ,#$ ÍÏÄÕÌÅȟ ×Å 

will use a ȰÃÏÄÅ ÌÉÂÒÁÒÙȱ ÃÏÎÔÁÉÎÉÎÇ Á ÓÕÉÔÅ ÏÆ ÆÕÎÃÔÉÏÎÓ ÆÏÒ ÔÈÉÓ ÐÕÒÐÏÓÅȢ ! ȰÃÏÄÅ ÌÉÂÒÁÒÙȱ ÉÓ Á ÐÒÅ-

compiled set of functions designed to be iÎÃÏÒÐÏÒÁÔÅÄ ÉÎÔÏ ÁÎ ÁÐÐÌÉÃÁÔÉÏÎ ÐÒÏÇÒÁÍȢ )Î ÔÈÅ Ȱ!62 

'##ȱ ×ÏÒÌÄȟ ÃÏÄÅ ÌÉÂÒÁÒÉÅÓ ÁÒÅ ÏÂÊÅÃÔ ÃÏÄÅ ÆÉÌÅÓ ×ÉÔÈ ÅØÔÅÎÓÉÏÎ Ȱ.aȱȢ 

However, if you use library functions in a program, the C compiler needs to know various 

properties of those functions, for example, ÔÈÅÉÒ ÎÁÍÅÓȟ ÎÕÍÂÅÒ ÁÎÄ ÔÙÐÅ ÏÆ ȰÁÒÇÕÍÅÎÔÓȱ ɉÉÆ ÁÎÙɊ 

and the return data type (for functions which return a value). 4ÈÅÓÅ ȰÐÒÏÐÅÒÔÉÅÓȱ ÍÕÓÔ ÂÅ 

ÄÅÃÌÁÒÅÄ ÉÎ Á ÈÅÁÄÅÒ ÆÉÌÅ ɉ×ÉÔÈ ÅØÔÅÎÓÉÏÎ ȰȢÈɊ ÃÏÎÔÁÉÎÉÎÇ ÔÈÅ ÆÕÎÃÔÉÏÎ ȰÐÒÏÔÏÔÙÐÅÓȱȢ 4ÈÅ ÌÉÂÒÁÒÙ 

header file must be #included in the application program, in all source files which access library 

functions. 

The AVR-"%$ ȰPeripheral Function LÉÂÒÁÒÙȱ ÉÓ Á ÆÉÌÅ ÎÁÍÅÄ Ȱlib_avrbedȢÁȱ ÁÎÄ ÔÈÅ ÒÅÓÐÅÃÔÉÖÅ 

ÈÅÁÄÅÒ ÆÉÌÅ ÉÓ ÎÁÍÅÄ Ȱlib_avrbedȢÈȱȢ !ÍÏÎÇ ÏÔÈÅÒ ÔÈÉÎÇÓȟ ÔÈÅ AVR-BED code library provides 

functions to support the LCD module, as followsȣ 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 16 of 56 Last revised: 4 July 2020 

/*  
 * Initialise the LCD controller (HD44780)...  
 * LCD mode is set to: 2 lines, char 5x8 dots, cursor on  
 */  
extern  void   lcd_initialise ( void );  
 
/*  
 * Output a command byte to the LCD c ontroller.  
 * Refer to command definitions (macros).  
 *  
 * Entry arg:  cm d = LCD command code (byte)  
 */  
extern  void   lcd_command(  BYTE cmd );  
 
/*  
 * Display a single ASCII character.  
 * Before calling this function, set cursor position using  
 *    lcd_cur sor_posn(row, col)  
 * where row is 0 (top line) or 1 (bottom line),  col is 0..15  
 * The cursor position will be advanced one place to the right on exit.  
 *  
 * Entry arg:  c = ASCII character code (printable)  
 */  
extern  void   lcd_write_char (  char  c );  
 
/*  
 * Function to display a NUL - terminated string.  
 * Before calling this function, set cursor position using  
 *    lcd_cursor_posn(row, col)  
 * where row is 0 (top line) or 1 (bottom line),  col is 0..15  
 * The cursor position will be advanced N places to th e right on exit,  
 * where N = number of characters in the input string (not incl. NUL terminator).  
 *  
 * Entry arg:  str = address of string (constant or variable)  
 *  
 * Usage examples:  lcd_print_string("Hello, world.");  // string constant  
 *                  lcd_print_string(buff);  // where buff is an array of chars  
 */  
extern  void   lcd_print_string (  char  * str  );  

4ÈÅ ÈÅÁÄÅÒ ÆÉÌÅ ÁÌÓÏ ÃÏÎÔÁÉÎÓ ÓÏÍÅ ȰÍÁÃÒÏȱ ÄÅÆÉÎÉÔÉÏÎÓȢ 7Å ÈÁÖÅÎȭÔ ÌÏÏËÅÄ ÁÔ ÍÁÃÒÏÓ ÙÅÔȟ ÂÕÔ ÆÏÒ 

ÔÈÅ ÔÉÍÅ ÂÅÉÎÇȟ ÌÅÔȭÓ ÊÕÓÔ ÁÓÓÕme they work lÉËÅ ÆÕÎÃÔÉÏÎÓȢ 4ÈÅ ÍÁÃÒÏÓ ÁÒÅȣ 

// Macro to set cursor position to a given row and column,  
// where row is 0 (top line) or 1 (bottom line),  col is 0..15  
#define  lcd_cursor_posn (row,  col)   lcd_command(0x80  + (row  *  0x40)  + col)  
 
// Alias for lcd_initialise( ), for legacy AVR - Pad library compatibility  
#define  initialise_LCD ()   lcd_initialise ()  

 

,ÅÔȭÓ ÎÏ× ÃÒÅÁÔÅ Á ÐÒÏÊÅÃÔ ÉÎ !ÔÍÅÌ 3ÔÕÄÉÏ ×ÈÉÃÈ ×ÉÌÌ ÕÓÅ ÔÈe AVR-BED library.  

Lesson 2, Exercise 1 

3ÔÁÒÔ !ÔÍÅÌ 3ÔÕÄÉÏ ÁÎÄ ÕÓÅ ÔÈÅ Ȱ.Å× 0ÒÏÊÅÃÔȱ ×ÉÚÁÒÄ ÔÏ ÃÒÅÁÔÅ Á ÐÒÏÊÅÃÔ ÃÁÌÌÅÄ Ȱ#-lesson2-

ÅØρȱ in much the same way as you did in Lesson 1. Delete everything from the source file, 

main.c, and enter the following program instead. The source code for this program may be 

found in a file accompanying this tutorial. 

The program shows how to convert a number (integer variable) to a string of printable digits 

using a standard library function, itoa ( ), for displaying on the LCD screen. The AVR GCC 

toolchain provides many other handy library function s, e.g. _delay_ms( ). 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 17 of 56 Last revised: 4 July 2020 

/**  
 * Pro ject:  C_lesson2_ex1  
 * File:     main.c  
 * Author:   <your name>  <date created>  
 *  
 * This program demonstrates how to use the AVR - BED function library (lib_avrbed.a)  
 * to initialize the LCD module, send it commands, and display text on it.  
 */  
#include  <avr/io.h>  
#include  <stdlib.h>        // Definitions for standard library  
#include  <string.h>        // Definitions for string library  
#include  "lib_avrbed.h"    // DefƦs for AVR - BED library (must precede delay.h)  
#include  <util/delay.h>    // Def Ʀs for del ay library  
 
// Text strings to display  
char   AppTitle []  = " Lesson 2  Ex. 1 " ;  
char   Blanks []    = "                " ;      // array of 16 spaces  
 
 
int   main( void )  
{  
    // Allocate an array of char's, i.e. a string variable...  
    char   strBuffer [20];     //  more than enough space for 16 chars  
    int    iCount ;            // local integer variable  
 
    initialise_LCD();              // Initialize I/O ports and LCD module  
    lcd_command(LCD_CLR);         // Send 1 - byte command to clear LCD  
    DDRC = DDRC & 0x07;            // Configure pins PC3..PC7 as inputs  
 
    lcd_cursor_posn(0,  0);         // Set LCD cursor to upper LHS  
    lcd_print_string( AppTitle );    // string to show on top line  
    lcd_cursor_posn(1,  0);  
    lcd_print_string( "Your text here.." );     // s tring to show on bottom line  
 
    // Wait a few seconds so that we can read the text before proceeding.  
    _delay_ms (3000);               // Delay function built into AVR GCC  
 
    lcd_cursor_posn(1,  0);  
    lcd_print_string( Blanks );      // Clear bottom lin e 
 
    iCount  = 10;   // initial value for countd own 
 
    while  ( iCount  !=  0)  
    {  
        // convert number (iCount) to string of decimal digits in strBuffer  
        itoa ( iCount ,  strBuffer ,  10);  
 
        // Display buffer contents on the bottom line (row = 1 , col = 6 )  
        lcd_cursor_posn(1,  6);  
        lcd_print_string( strBuffer );  
 
        // Wait a second before next value is displayed  
        _delay_ms (1000);  
        lcd_cursor_posn(1,  0);  
        lcd_print_string( Blanks );   // Clear bottom line  
 
        iCount  = iCount  -  1;   // decrement the counter (alt.  iCount -- ; )  
    }  
 
    lcd_cursor_posn(1,  6);  
    lcd_print_string( "BANG!");  
}  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 18 of 56 Last revised: 4 July 2020 

Before we can build this project, the AVR-BED library files must be added. Using Windows 

Explorer (File Manager), copy ÔÈÅ Ô×Ï ÆÉÌÅÓ ȰÌÉÂͺÁÖÒÂÅÄȢÁȱ ÁÎÄ ȰÌÉÂͺÁÖÒÂÅÄȢÈȱ ÉÎÔÏ ÔÈÅ ÐÒÏÊÅÃÔ 

folder you created. The folder contents ÓÈÏÕÌÄ ÌÏÏË ÌÉËÅ ÔÈÉÓȣ 

 

)Î !ÔÍÅÌ 3ÔÕÄÉÏȟ ÃÌÉÃË ÔÈÅ ÔÁÂ Ȱ3ÏÌÕÔÉÏÎ %ØÐÌÏÒÅÒȱ ÁÌÏÎÇ ÔÈÅ ÂÏÔÔÏÍ ÏÆ ÔÈÅ 2(3 ÐÁÎÅÌȢ 2ÉÇÈÔ-click 

ÏÎ ÔÈÅ ÐÒÏÊÅÃÔ ÔÉÔÌÅ ɉȰ#ͺÌÅÓÓÏÎςͺÅØρȱ ÏÒ ×ÈÁtever you named it) and select Add > Existing Item. 

Navigate to your project folder and choose the file: ȰÌÉÂͺÁÖÒÂÅÄȢÈȱȢ 4ÈÉÓ ÆÉÌÅ ÓÈÏÕÌÄ now appear 

ÉÎ ÔÈÅ 3ÏÌÕÔÉÏÎ %ØÐÌÏÒÅÒ ÐÁÎÅÌ ÄÉÒÅÃÔÌÙ ÁÂÏÖÅ ȰÍÁÉÎȢÃȱȢ (See screen-shot.) 

Then right-clicË ÏÎ Ȱ,ÉÂÒÁÒÉÅÓȱ ÁÎÄ ÓÅÌÅÃÔ Ȱ!ÄÄ ,ÉÂÒÁÒÙȱ ÆÒÏÍ ÔÈÅ ÄÒÏÐ-down menu. A pop-up box 

will  ÁÐÐÅÁÒȢ #ÌÉÃË Ȱ"ÒÏ×ÓÅ ,ÉÂÒÁÒÉÅÓȱ, navigate to your project folder and choose the file: 

ȰÌÉÂͺÁÖÒÂÅÄȢÁȱȢ #ÌÉÃË Ȱ/+ȱȢ The file should now appear in the Solution Explorer panel in the 

LibrariÅÓ ÓÅÃÔÉÏÎȟ ÁÌÏÎÇ ×ÉÔÈ ÔÈÅ ÓÔÁÎÄÁÒÄ ÌÉÂÒÁÒÙȟ ȰÌÉÂÍȱȢ ɉ3ÅÅ ÓÃÒÅÅÎ-shot.) 

 

Now the program can be built, downloaded to your board and executed in the usual way.  

(See page 8 in Lesson 1.) If you get a compilation error, check your code for typos. 

Next, ÌÅÔȭÓ examine the program code to see how it works. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 19 of 56 Last revised: 4 July 2020 

At the top of the program, there are several #include directives to include required header files. 

These files comprise definitions and declarations of functions contained in various library files. 

!ÌÌ ÂÕÔ ÏÎÅ ÏÆ ÔÈÅÓÅ ÌÉÂÒÁÒÉÅÓ ÁÒÅ ȰÓÔÁÎÄÁÒÄȱ ÌÉÂÒÁÒÉÅÓ ÆÏrming part of the AVR GCC tool-chain. The 

only ȰÎÏÎ-ÓÔÁÎÄÁÒÄȱ ÌÉÂÒÁÒÙ ÉÓ ȰÌÉÂͺÁÖÒÂÅÄȱ ×ÈÉÃÈ ×Å ÁÄÄÅÄ ÔÏ ÔÈÅ ÐÒÏÊÅÃÔȢ 

The statement below creates an array of characters and initialises it with a ÓÔÒÉÎÇȣ 

char   AppTitle []  = "AVR- BED with LCD" ;  

The next two statements define an array of 20 chars, strBuffer, and an integer variable, iCount. 

4ÈÅÓÅ ÁÒÅ ÃÁÌÌÅÄ ȰÌÏÃÁÌȱ variables because they are defined inside a function (main) and their 

scope is therefore restricted to use within that function. 

    char   strBuffer [20];     // more than enough space for 16 chars  
    int    iCount ;            // local integer variable  

The array will be used to store printable digits, i.e. ASCII characters, corresponding to the 

numeric value of iCount. The statements below are function calls. The first function sets up I/O 

port pins used by the LCD module and initialises the LCD controller device. The second function, 

lcd_command( ), writes a command byte to the LCD controller. The argument LCD_CLR is a 

ȰÓÙÍÂÏÌÉÃ ÃÏÎÓÔÁÎÔȱ ×ÈÉÃÈ ÉÓ ÓÉÍÐÌÙ Á ÎÁÍÅ ÇÉÖÅÎ ÔÏ Á ÎÕÍÅÒÉÃ ÖÁÌÕÅȢ 

    initialise_LCD();              // Initialize I/O ports and LCD mo dule  
    lcd_command(LCD_CLR);         // Send 1 - byte command to clear LCD  

There are several ÏÆ ÔÈÅÓÅ ȰÓÙÍÂÏÌÉÃ ÃÏÎÓÔÁÎÔÓȱ ÄÅÆÉÎÅÄ ÉÎ ÔÈÅ ÌÉÂÒÁÒÙ ÈÅÁÄÅÒ ÆÉÌÅȟ ÌÉÂͺÁÖÒÂÅÄȢÈȟ 

ÁÓ ÓÈÏ×Î ÂÅÌÏ×ȣ 

// LCD Controller Command bytes  
//  
#define LCD_FS_8BIT_2LINES  0b00 111000  // DL = 1 (8 bits), N = 1 (2 lines), F = 0  
#define LCD_OFF             0b00001000  / / D=0 (off), C=0 (cursor off), B=0 (no blink)  
#define LCD_CLR             0b00000001  // Clears entire display  
#define LCD_HOME            0b00000010  // Return cursor to home posn, DDRAM addr = 0  
#define LCD_EM_INC          0b00000110  // Increment cursor  position, no dispaly shift  
#define LCD_ON              0b00001110  // D=1 (on), C=1 (cursor on), B=0 (no blink )  
#define LCD_CURSOR_OFF      0b00001100  // Display ON, cursor OFF (hidden)  
#define LCD_DDRAM_1ST_LINE  0b10000000  // Char positions on 1st lin e: 0x00 to 0x0F  
#define LCD_DDRAM_2ND_LINE  0b11000000  // Char positions on 2nd line: 0x40 to 0x4F  
#define LCD _CGRAM_SET       0b01000000  // Set CGRAM address  

The symbol LCD_CLR is defined as the value 0b00000001, or simply 1. When a command byte of 

valuÅ ρ ÉÓ ÓÅÎÔ ÔÏ ÔÈÅ ,#$ ÃÏÎÔÒÏÌÌÅÒȟ ÔÈÅ ÄÉÓÐÌÁÙ ÉÓ ÃÌÅÁÒÅÄȢ 3Ï ×ÈÙ ÎÏÔ ÊÕÓÔ ×ÒÉÔÅȣ 

    lcd_command( 1 );          // Send command = 1 to clear LCD    ȣ ȩ 

The purpose behind using symbolic constants instead of raw numbers is to improve code 

readability without  needing a comment. The number 1 by itself is quite meaningless in this 

context. Using LCD_CLR instead makes it more obvious that this command clears the display. 

Another advantage of using symbolic constants is that it is less likely  to make an error by writing 

the wrong numeric value. Further, if there are several instances of a constant used for a 

particular purpose, and its value needs to be changed everywhere, only the symbol definition 

needs to be changed and it is guaranteed that every instance of the constant will be changed. 

4ÈÅ ÎÅØÔ ÓÔÁÔÅÍÅÎÔ ÉÎ ÔÈÅ ÐÒÏÇÒÁÍ ÉÓȣ 

    DDRC = DDRC & 0x07;            // Configure pins PC3..PC7 as inputs  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 20 of 56 Last revised: 4 July 2020 

The register DDRC is modified so that I/O pins PC3 thru PC7 are configured as inputs, while 

leaving pins PC0, PC1 and PC2 unchanged. This is done because the function initialise_LCD( ) 

configures pins PC0, PC1 and PC2 as outputs, but it is not known how this function configures 

the other 5 pins of Port C. If our application needs to use any of the pins PC3 thru PC6, then the 

program must configure them, after the call to initialise_LCD( ). 

Examine the next ÆÏÕÒ ÌÉÎÅÓ ÏÆ ÔÈÅ ÐÒÏÇÒÁÍȣ 

    lcd_cursor_posn(0,  0);         // Set LCD cursor to upper LHS  

    lcd_print_string( AppTitle );    // string to show on top line  

    lcd_cursor _posn(1,  0);  

    lcd_print_string( "Your text here.." );     // string to show on bottom line  

The first statement is a function call to set the LCD cursor position to row 0, column 0, i.e. first 

character position on the top line (row 0). The second statement displays the text stored in the 

array AppTitle, i.e. the string Ȱ!62-"%$ ×ÉÔÈ ,#$ȱȢ .ÅØÔȟ the cursor is moved to the bottom line 

ɉÒÏ× ρɊ ÁÎÄ ÔÈÅ ÓÔÒÉÎÇ Ȱ9ÏÕÒ ÔÅØÔ ÈÅÒÅȢȢȱ ÉÓ ×ÒÉÔÔÅÎ ÔÏ ÔÈÅ ,#$Ȣ 4ÈÅ ÉÎÔÅÎÔion here is that you 

should replace this string with one of your own choice, up to 16 characters. 

The program then delays for a fixed time, i.e. 3 seconds (3,000ms) to allow the user to view the 

text on the display. The function _delay_ms( ) is intrinsic (i.e. built in) to the AVR GCC compiler. 

To use this ÆÕÎÃÔÉÏÎȟ ÔÈÅ ÈÅÁÄÅÒ ÆÉÌÅ ȰÄÅÌÁÙȢÈȱ ɉÉÎ ÓÙÓÔÅÍ ÆÏÌÄÅÒ ȰÕÔÉÌȱɊ ÍÕÓÔ ÂÅ ΠÉÎÃÌÕÄÅÄȢ 

    _delay_ms (3000);     // Delay for 3 seconds (3000ms)  

After the delay time expires, the program clears the bottom line (row 1) of the display by writing 

a string of 16 spaces (blanks), then the variable iCount is assigned the value 10. 

The program then enters Á Ȱ×ÈÉÌÅȱ ÌÏÏÐȢ 4ÈÅ ÌÏÏÐ repeats while the conditional expression 

(iCount != 0) is TRUE. The relational operator ! = ÍÅÁÎÓ ȰÎÏÔ ÅÑÕÁÌ ÔÏȱȢ The variable iCount is 

decremented on each iteration of the loop, so after 10 iterations, the condition (iCount != 0) will 

be FALSE and the loop exits.  

2ÅÆÅÒ ÔÏ ÔÈÅ Ȱ#-ÌÅÓÓ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱȟ page 5, for explanation of function arguments and page 

13 for details on ÔÈÅ Ȱ×ÈÉÌÅȱ loop construct. 

)ÎÓÉÄÅ ÔÈÅ Ȱ×ÈÉÌÅȱ ÌÏÏÐȟ ÔÈÅÒÅ ÉÓ Á ÂÕÎÃÈ ÏÆ ÓÔÁÔÅÍÅÎÔÓ ÔÏ ÄÉÓÐÌÁÙ ÔÈÅ ÖÁÌÕÅ ÏÆ ÔÈÅ ÖÁÒÉÁÂÌÅ É#ÏÕÎÔ 

as it counts down from 10 to 1. The conversion from integer to ASCII string (printable digits) is 

done by a standard library function, itoa( ), which takes 3 arguments. The statement which calls 

ÔÈÅ ÆÕÎÃÔÉÏÎ ÌÏÏËÓ ÌÉËÅ ÔÈÉÓȣ 

        itoa ( iCount ,  strBuffer ,  10);  

ȣ ×ÈÅÒÅ ÔÈÅ ÁÒÇÕÍÅÎÔ É#ÏÕÎÔ ÉÓ ÔÈÅ integer to be converted, strBuffer is the name of the array 

into which the ASCII digits are to be written, and the last argument, 10, is the number base for 

the conversion -- in this case decimal. If we wanted to display iCount as a hexadecimal number, 

we would use the value 16 for this arg. For a binary conversion, 2, and so on. 

Note that standard library functions appear in italics in the Atmel Studio editor. To see detailed 

usage information about a standard library function, just right -click on its name in the editor. 

On each iteration of the loop, after the display is updated, a delay of 1 second (1000ms) is 

imposed, so that the count-down interval is 1 second. On exit from the loop, the program displays 

ÔÈÅ ÔÅØÔ Ȱ"!.'Ȧȱ ÏÎ ÔÈÅ ,#$ ÂÏÔÔÏÍ ÌÉÎÅ, then stops. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 21 of 56 Last revised: 4 July 2020 

Exercise 2 

(a) Modify the program so that the variable iCount counts up indefinitely, starting at zero.  

(b)  Count up, starting at 32,750. Notice what happens when the count reaches 32,768 and 

explain your observation. 

Tip:  Instead of creating a New Project for each program variant in the lesson, copy the source 

ÃÏÄÅ ÆÒÏÍ ȰÍÁÉÎȢÃȱ ÁÎÄ ÐÁÓÔÅ ÉÔ ÉÎÔÏ Á ÃÏÄÅ ÅÄÉÔÏÒ, NotePad++. Save the file in NotePad++ 

ÁÓ Ȱ,ÅÓÓÏÎςͺ%ØΠΠͺÍÁÉÎȢÃȱ ɉ×ÈÅÒÅ ΠΠ ÉÓ ÔÈÅ ÖÁÒÉÁÎÔ ÎÕÍÂÅÒɊȢ .Ï× ÙÏÕ ÃÁÎ ÅÄÉÔ ÔÈÅ 

program in Atmel Studio to build a new application. To recover an old program to rebuild, 

simply copy the source code from the file and pasÔÅ ÉÔ ÉÎÔÏ ȰÍÁÉÎȢÃȱ in Atmel Studio. 

When you run your ÐÒÏÇÒÁÍȟ ÏÂÓÅÒÖÅ ÔÈÁÔ ×ÈÅÎ ÔÈÅ ÃÏÕÎÔ ÒÅÁÃÈÅÓ ρπȟ ÔÈÅ ÎÕÍÂÅÒ Ȱmovesȱ ÏÎÅ 

decimal place to the right. TÈÁÔȭÓ ÂÅÃÁÕÓÅ ÔÈÅ ÎÕÍÂÅÒ ÈÁÓ ÇÒÏ×Î ÉÎ ÓÉÚÅ ÆÒÏÍ ÏÎÅ ÔÏ Ô×Ï ÄÉÇÉÔÓȟ 

of course. The readout would look better if the digits were right-justified, i.e. the least significant 

ÄÉÇÉÔ ɉ,3$Ɋ ÁÌ×ÁÙÓ ÏÃÃÕÐÉÅÄ ÔÈÅ ÓÁÍÅ ÐÌÁÃÅȢ 4ÈÉÓ ÉÓ ÎÏÔ ÈÁÒÄ ÔÏ ÄÏȟ ÂÕÔ ÆÉÒÓÔ ÙÏÕȭÌÌ need to learn 

ÁÂÏÕÔ ȰÃÏÎÄÉÔÉÏÎÁÌ ÅØÅÃÕÔÉÏÎȱ ÕÓÉÎÇ ÔÈÅ Ȱifȱ ÓÔÁÔÅÍÅÎÔȢ 

Conditional Execution ɀ ÔÈÅ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔ 

!ÌÌ ÂÕÔ ÔÈÅ ÍÏÓÔ ÔÒÉÖÉÁÌ ÏÆ ÐÒÏÇÒÁÍÓ ÉÎÖÏÌÖÅ ȰÃÏÎÄÉÔÉÏÎÁÌ ÅØÅÃÕÔÉÏÎȱ ×ÈÉÃÈ ÓÉÍÐÌÙ ÍÅÁÎÓ ÍÁËÉÎÇ 

decisions based on the value of a variable, or comparison of a variable with another variable, or 

constant, or whatever. In C, such decisions are maÄÅ ÕÓÉÎÇ ÁÎ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔȢ 

4ÈÅ ÓÉÍÐÌÅÓÔ ÆÏÒÍ ÏÆ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔ ÉÓȣ 

if  ( condition ) statement ;  

ȣ ×ÈÅÒÅ condition  is a Boolean (logical) expression and statement  is any C statement. 

&ÏÒ ÅØÁÍÐÌÅȟ ÌÅÔȭÓ ÓÁÙ ×Å ×ÁÎÔ ÔÏ ÔÅÓÔ ÔÈÅ ÖÁÌÕÅ ÏÆ ÁÎ ÉÎÔÅÇÅÒ ÖÁÒÉÁÂÌÅȟ ÉÖÁl, and if it is less than 

ρπȟ ÁÓÓÉÇÎ ÖÁÌÕÅ χ ÔÏ ÁÎÏÔÈÅÒ ÖÁÒÉÁÂÌÅȟ ÐÌÁÃÅȢ (ÅÒÅȭÓ ÈÏ× ÉÔȭÓ ÄÏÎÅȣ 

if (ival < 10) pl ace = 7;  

The expression in brackets (ival < 10)  is called a conditional expression, also a Boolean 

ÅØÐÒÅÓÓÉÏÎȟ ÂÅÃÁÕÓÅ ÉÔ ÅÖÁÌÕÁÔÅÓ ÔÏ ÅÉÔÈÅÒ ȰTRUEȱ ÏÒ ȰFALSEȱȢ )Î #ȟ ÔÈÅ "ÏÏÌÅÁÎ ÖÁÌÕÅ Ȱ&!,3%ȱ ÉÓ 

ÒÅÐÒÅÓÅÎÔÅÄ ÂÙ ÚÅÒÏ ɉπɊ ÁÎÄ Ȱ425%ȱ ÉÓ ÒÅÐÒÅÓÅÎÔÅÄ ÂÙ ÁÎÙ non-zero value. Hence, a conditional 

ÅØÐÒÅÓÓÉÏÎ ÄÏÅÓÎȭÔ ÎÅÅÄ ÔÏ ÂÅ Á ÃÏÍÐÁÒÉÓÏÎ ɀ it may be a simple variable or constant. 

if ( flag ) alpha = 0 ;  

In the above statement, if the variable flag  is non-zero, i.e. Ȱ425%ȱ, then the variable alpha  will 

be set to 0. But what if flag  is zero, i.e Ȱ&!,3%ȱȩ 4ÈÅÒÅȭÓ ÍÏÒÅ ÔÈÁÎ ÏÎÅ ×ÁÙ ÔÏ ÈÁÎÄÌÅ ÔÈÅ ÃÁÓÅ 

where the conditional expression is false. In the above example, assuming alpha must be set to 

Ĭ1 if the flag is false (0), we could write: 

if  ( flag ) alpha = 0 ;  
if  ( flag = = 0 ) alpha = - 1;  

Or, we could write: 

alpha = - 1;  
if  ( flag ) alpha = 0;   // alpha will remain = - 1 if flag is 0  

But C provides a more elegant method ɀ ÔÈÅ ȰÅÌÓÅȱ ÃÌÁÕÓÅȢ Examine ÔÈÅ ÆÏÌÌÏ×ÉÎÇ ÃÏÄÅȣ 

if  ( flag ) alpha = 0 ;  
else   alpha = - 1;  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 22 of 56 Last revised: 4 July 2020 

The ÓÔÁÔÅÍÅÎÔ ÁÆÔÅÒ ÔÈÅ ËÅÙ×ÏÒÄ ȰÅÌÓÅȱ ×ÉÌÌ ÂÅ ÅØÅÃÕÔÅÄ ÏÎÌÙ ÉÆ ÔÈÅ ÃÏÎÄÉÔÉÏÎ ɉflag ) is false,  

i.e. if flag  is zero. Note the semicolons at the end of each clause ɀ these are mandatory. Although 

some C purists might groan, the whole construct may be written on a single line, thus: 

if  ( flag ) alpha = 0 ;   else   alpha = - 1;  

)Ô ÉÓ ÃÕÓÔÏÍÁÒÙ ÔÏ ÄÅÆÉÎÅ Ô×Ï ÓÙÍÂÏÌÉÃ ÃÏÎÓÔÁÎÔÓ Ȱ425%ȱ ÁÎÄ Ȱ&!,3%ȱ ÆÏÒ ÕÓÅ ÉÎ "ÏÏÌÅÁÎ 

expressions. These are often pre-defined in a library header fileȟ ÅȢÇȢ ȰÌÉÂͺÁÖÒÂÅÄȢÈȱ. 

Refer now ÔÏ ÔÈÅ ȰC-ÌÅÓÓ 2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱȟ page 5, for further details on Boolean comparison 

ÅØÐÒÅÓÓÉÏÎÓȠ  ÐÁÇÅ ρυ ÆÏÒ ÍÏÒÅ ÏÎ ÔÈÅ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔȠ  !ÐÐÅÎÄÉØ ! ÆÏÒ Á ÌÉÓÔ ÏÆ Ȱ/ÐÅÒÁÔÏÒÓȱ, in 

ÐÁÒÔÉÃÕÌÁÒȡ ȰÇÒÅÁÔÅÒ ÔÈÁÎȱȟ ȰÌÅÓÓ ÔÈÁÎȱȟ ȰÇÒÅÁÔÅÒ ÏÒ ÅÑÕÁÌ ÔÏȱȟ ȰÅÑÕÁÌ ÔÏȱȟ ȰÎÏÔ ÅÑÕÁÌ ÔÏȱȟ ÅÔÃȢ 

'ÅÔÔÉÎÇ ÂÁÃË ÔÏ ÏÕÒ ÐÒÏÇÒÁÍÍÉÎÇ ÃÈÁÌÌÅÎÇÅȟ ÈÅÒÅȭÓ ÈÏ× ÔÏ ÕÓÅ ÁÎ ȰÉÆȱ ÓÔÁÔÅÍÅÎÔ ÔÏ ÁÄÊÕÓÔ ÔÈÅ ,#$ 

cursor position depending on the value of the variableȟ É#ÏÕÎÔȣ 

if  ( iCount < 10 ) lcd_cursor_posn(1, 8) ;  
else   lcd_cursor_posn(1, 7) ;  

Notice that the statement following the conditional expression (iCount < 10) is a call to the 

function lcd_cursor_posn( ). The row (arg #1) is 1 in both cases, i.e. bottom row. The column (arg 

#2) varies depending on iCount. This is by no means the only solution. We could create another 

variable, column, and set it to the place where the printout should start. 

if  ( iCount < 10 ) column = 8 ;    
else   column = 7;  
 
lcd_cursor_posn(1, c olumn) ;   // column is 7 or 8 depending on iCount  

But the foregoing solutions will only work while iCount is less than 100. We need a more 

generalised solution which will work for values of iCount up to 35,0ππ ɉυ ÄÅÃÉÍÁÌ ÐÌÁÃÅÓɊȢ 4ÈÁÔȭÓ 

your challenge to complete the next exerciseȟ ÐÁÒÔ ɉÃɊȣ 

Exercise 2 (c)  

Arrange the displayed number (iCount) so that the least significant digit always occupies 

ÔÈÅ ÓÁÍÅ ÐÌÁÃÅ ɉÌÅÔȭÓ ÓÁÙ ÃÏÌÕÍÎ 8) on the bottom line. This is to prevent the number from 

moving one place to the right every time its value reaches a power of 10. Test the program 

using different starting values, in particular: 95, 995 and 9995. 

Also, see if you can hide the cursor (underscore) using the function lcd_command( ).   

[Hint: See the list of LCD commands on page 18.] 

Binary to Hexadecimal C onversion  

The next example program shows how to convert a 16-bit unsigned integer (binary number) to 

hexadecimal format to be output as 4 hex digits. Recall that a hex digit is represented by 4 bits, 

so that the 16 digit values from 0 to 15 (= F) can be encoded in binary.  

To convert a 16-bit number to hex, all that needs to be done is to separate the 16 bits into 4 

ȰÐÁÃËÅÔÓȱ ÏÆ τ ÂÉÔÓ ÅÁÃÈȢ 4ÈÅ least significant digit (4 bits) can be isolated by masking off the 

remaining 12 bits. The next signifi cant digit is obtained by shifting the original 16-bit number 

right 4 places before masking off the 12 unwanted bits again. The process is repeated until all 4 

digits have been isolated and stored in an array of 4 bytes. The array is then written to the display 

as 4 hex ASCII digits, in reverse order, i.e. hexDigit[3] down to hexDigit[0] (= LSD). 

 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 23 of 56 Last revised: 4 July 2020 

/**  
 * Project:  C_lesson2_ex3 a  |  Lesson 2, Exercise 3 a 
 * File:     main.c  
 * Author:   <your name>  <date created>  
 *  
 * This progra m demonstrates binary - to - hex conversion for numeric display on the LCD.  
 */  
#include  <avr/io.h>  
#include  <stdlib.h>  
#include  <string.h>  
#include  "lib_avrbed.h"  
#include  <util/delay.h>  
 
// Text strings to display  
char   AppTitle []  = "Lesson 2  Ex. 3 a" ;  
char   Blanks []  = "                " ;      // array of 16 spaces  
 
 
int   main( void )  
{  
    unsigned   ival ;        // local integer variable (unsigned!)  
    int    place ;           // digit place, index (0 = LSD)  
    int    column;  
    char   hexDigit ;  
 
    initialise_LC D();              // Initialize I/O ports and LCD module  
    lcd_command( LCD_CURSOR_OFF);   // Cursor OFF, display ON  
    lcd_cursor_posn (0,  0);         // Set LCD cursor to upper LHS  
    lcd_print_string ( AppTitle );    // Show title on top line  
 
    ival  = 1023;      // <<<<<<<<<<<<<<<<<<<<<<  Set integer value to display here  
 
    place  = 0;     // start with digit[0] (LSD)  
 
    while  (  place  < 4 )    // process 4 hex digits  
    {  
        hexDigit  = ival  & 0x000F;     // Keep lower 4 bits, others = 0  
        column = 10 -  place ;          // writing Right to Left  
        lcd_cursor_posn (1,  column);  
 
        if  ( hexDigit  < 10)  lcd_write_char ('0'  + hexDigit );    // hexDigit <= 9  
        else   lcd_write_char ('A'  + hexDigit  -  10);            // hexDigit >= 10, i.e. A..F  
 
        ival  = ival  >> 4;             // Shift next 4 bits into lower 4 bits  
        place ++;                      // next significant digit  
    }  
}  
 

The only new thing introduced here is the function: lcd_write_char( ). The argument of this 

function is an ASCII character code. Its value determines what is written on the display. 

.ÏÔÅ ÔÈÁÔ Á ÄÅÃÉÍÁÌ ÄÉÇÉÔ ÅÎÃÌÏÓÅÄ ÂÙ ÓÉÎÇÌÅ ÑÕÏÔÅÓȟ ÅȢÇȢ Ȭωȭȟ ÒÅÐÒÅÓÅÎÔÓ ÔÈÅ !3#)) ÃÏÄÅ ÆÏÒ ÔÈÁÔ 

digit, which is 0x39 (= 57 decimal) -- not the same as the digit value (9 in this case). So, instead 

ÏÆ ×ÒÉÔÉÎÇ Ȭπȭȟ ×Å ÃÏÕÌÄ ×ÒÉÔÅ πØσπ ɉЀ τψ ÄÅÃÉÍÁÌɊȟ ÂÕÔ ÉÔ ×ÏÕÌÄÎȭÔ ÌÏÏË ÁÓ ÍÅÁÎÉÎÇÆÕÌȢ To make 

more sense of this, have a look at an ASCII code chart. 

Lesson 2, Exercise 3 (b)  

Modify the program listed above to display the value of ival in decimal, without using the 

function itoa( ). The output format shall be 5 digits with leading zeros (if any) shown. 

Preferably, organise the program into a main function and a sub-function which does the 

conversion from integer to a string of decimal digits stored in an array. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 24 of 56 Last revised: 4 July 2020 

Tip :   4ÈÅ ÒÅÍÁÉÎÄÅÒ ÏÆ ÁÎ ÉÎÔÅÇÅÒ ÄÉÖÉÓÉÏÎ ÃÁÎ ÂÅ ÆÏÕÎÄ ÕÓÉÎÇ ÔÈÅ ȰÍÏÄÕÌÕÓȱ ÏÐÅÒÁÔÏÒ ɉϷɊȢ 4Ï 

find the remainder of a division by 10, use the expression (ival % 10). Note also that the 

result (quotient) of an integer division yields only the integer part; the fractional part is 

lost and the result is truncated to the nearest lower integer, i.e. not rounded. 

Examples:  3/5 is 0;  4/5 is 0;  99/100 is 0;  12/5 is 2;  16/3 is 5;  199/100 is 1. 

Program example with  a simple user interface : 

A program is required to convert degrees Celcius to Fahrenheit over the range Ĭ10 to +250 °C. 

Both values are to be displayed together on the LCD top line. Four push-buttons will be used to 

select the displayed temperature. Button [A] is to add 5 degrees, [B] to add 10 degrees, [C] to 

ȰÃÌÅÁÒȱ the display back to 0 °C, and button [D] to decrement by 1 degree. The LCD bottom line is 

to show Á ȰÍÅÎÕ barȱȢ The buttons are wired to the MCU as shown in Fig 2.1. 

To make the job easy, the program will use pre-built library functions to handle the push-

buttons. The Ȱbutton ÓÃÁÎȱ routine (function which detects button presses) is meant to be called 

once every 50 milliseconds or thereabouts. The program will also use a library function to handle 

the timing. The function prototype declarations below are copied from the library header file 

ȰÌÉÂͺÁÖÒÂÅÄȢÈȱȢ Comment blockÓ ÄÅÓÃÒÉÂÅ ÈÏ× ÅÁÃÈ ÆÕÎÃÔÉÏÎ ÏÐÅÒÁÔÅÓȣ 

Push-button  Functions  

/*  
 * Function ButtonScan() must be called periodically from the application program  
 * (main  loop) at intervals of about 50ms for reliable "de - bounce" operation.  
 *  
 * It's main purpose is to detect "button hit" events, i.e. transition from "no button  
 * pressed" to "button pressed" and to raise a status flag to signal the event.  
 *  
 * Th e entry argument (nButts) specifies the number of buttons (1..4) to be serviced.  
 * For example, if nButts is 1, only Button_A is serviced;  if nButts is 3, then 3  
 * buttons (Button_A, Button_B and Button_C) will be serviced by the scan routine.  
*/  
void   ButtonSc an( unsigned  char  nButts );  
 
/*  
 * Function button_hit() returns the Boolean value (TRUE or FALSE) of a flag indicating  
 * whether or not a "button hit" event occurred since the previous call to the function.  
 *  
 * Entry argument 'button_ID' is an AS CII code  identifying one of 4 buttons to check,  
 * which must be one of: 'A', 'B', 'C' or 'D', otherwise the function will return FALSE.  
 * If the given button is not serviced by ButtonScan(), button_hit() will return FALSE.  
 *  
 * The flag (static variable ) is cle ared "automatically" by the function so that  
 * on subsequent calls the function will return FALSE (until the next button hit ).  
 */  
BOOL  button_hit ( char   button_ID );  
 
/*  
 * Function button_pressed() returns the Boolean value (TRUE or FALSE) of a flag tell ing  
 * whether or not a given button is currently pressed, i.e. held down.  
 *  
 * Entry argument 'button_ID' is an ASCII code identifying one of 4 buttons to check,  
 * which must be one of: 'A', 'B', 'C' or 'D', otherwise the function will return FALSE.  
 * If the given button is not serviced, button_pressed() will return FALSE.  
 */  
BOOL  button_pressed ( char   button_ID );  
 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 25 of 56 Last revised: 4 July 2020 

Timer Functions  

/*  
 * Function:  TC1_initialize()  
 *  
 * This function initializes the AVR on - chip Timer - Counter TC1 to generate a periodic  
 * interrupt request (IRQ) every millisecond precisely. The interrupt service routine  
 * (ISR) increments a 32 - bit counter variable acce ssed by the function milliseconds().  
*/  
void   TC1_initialize ();  
 
 
/*  
 * Function:  milliseconds()  
 *  
 * This function re turns the value of a free - running 32 - bit unsigned counter variable  
 * incremented every millisecond by Timer/Counter TC1 interrupt service routine  (ISR) .  
 * (The counter variable is not directly accessible by the application program.)  
 *  
 * It's purpose is  to implement "non - blocking" time delays and event timers.  
 *  
 * Typical usage:  
 *  
 *    static unsigned long eventStartTime;  
 *                  :  
 *    eventStartTime = milliseconds();  // capture the starting time  
 *                  :  
 *    if (millise conds() >= (eventStartTime + EVENT_DURATION))  // time's up!  
 *    {  
 *        // Do what needs to be done TIME_DURATION ms after eventStartTime  
 *    }  
 *  
 * A program can implement many independent event timers, simply by declaring  
 * a unique eventStart Time (variable) and a unique EVENT_DURATION (constant)  
 * for each independent "event" or delay to be timed.  
 *  
 * Be sure to declare each eventStartTime as 'static' (permanent) so that it  
 * will be kept between multiple calls to the  function in which it is defined.  
 */  
unsigned  long   milliseconds ();  
 

The timer function milliseconds( ) returns a long integer (32-bits), the value of which is the 

number of milliseconds elapsed since the MCU was last reset. On every successive call to the 

function, it will re turn a higher value than the previous call, unless the counter overflows.  

How many milliseconds after MCU reset will be counted before the counter overflows? 

Maximum value of unsigned long integer (32 bits) is 0xFFFFFFFF (hex) = 4,294,967,295. This 

number of milliseconds equates to about 1193 hours, or about 49 days. Our applications will be 

concerned with much shorter time intervals, so a counter overflow would not matter. And it 

would not matter even if an overflow occurred in the middle of a timed eventȢ ɉ4ÈÁÔȭÓ ÏÎÅ ÏÆ ÔÈÅ 

×ÏÎÄÅÒÓ ÏÆ ςȭÓ ÃÏÍÐÌÅÍÅÎÔ ÁÒÉÔÈÍÅÔÉÃȦɊ 

So, to set up a time interval, say 50ms, the function milliseconds( ) is called at the start of the 

interval and the returned value is saved. Thereafter, the function is called again, frequently, until 

the value returned is 50 ms higher than the saved starting value. Refer to the comment banner 

iÎ ÔÈÅ ÆÕÎÃÔÉÏÎ ÐÒÏÔÏÔÙÐÅ ÕÎÄÅÒ ȰTÙÐÉÃÁÌ ÕÓÁÇÅȱȢ )Î this case, the value of the constant 

EVENT_DURATION is 50 (ms).  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 26 of 56 Last revised: 4 July 2020 

To set up a recurring 50ms time interval, i.e. a Ȱperiodic eventȱ, a new interval is started when 

each 50ms interval ends, i.e. a new start time is captured and saved. The process is repeated. 

The function ButtonScan( ) does not return anything. It reads the button input pin states and 

determinÅÓ ÉÆ Á ÂÕÔÔÏÎ ȰÈÉÔȱ ÈÁÓ ÏÃÃÕÒÒÅÄ ÓÉÎÃÅ ÔÈÅ ÐÒÅÖÉÏÕÓ ÃÁÌÌȟ ÉȢÅȢ ÉÆ Á ÂÕÔÔÏÎ ÉÓ ÆÏÕÎÄ ÔÏ ÂÅ 

pressed on the current call, but the same button was released on the previous call. If such an 

ÅÖÅÎÔ ÉÓ ÄÅÔÅÃÔÅÄȟ ÔÈÅ ÆÕÎÃÔÉÏÎ ÓÅÔÓ Á ȰÆÌÁÇȱ ɉ"ÏÏÌÅÁÎ ÖÁÒÉÁÂÌÅɊ ÂÕÒÉÅd in the library code. To read 

the value of this flag, the application must call another function, button_hit( ), which will return 

Ȱ425%ȱ ÉÆ Á ÂÕÔÔÏÎ ÈÉÔ ×ÁÓ ÄÅÔÅÃÔÅÄȟ ÏÔÈÅÒ×ÉÓÅ Ȱ&!,3%ȱȢ 4ÈÅ ÆÕÎÃÔÉÏÎ ÁÒÇÕÍÅÎÔ ÉÓ ÁÎ !3#)) 

character code representing the buÔÔÏÎ ÏÆ ÉÎÔÅÒÅÓÔȟ ÉȢÅȢ Ȭ!ȭȟ Ȭ"ȭȟ Ȭ#ȭ ÏÒ Ȭ$ȭȢ 

For example, to check if button [B] was hit, we could wr ite ÔÈÅ ÓÔÁÔÅÍÅÎÔȣ 

if  (  button_hit (ƥBƦ)  )  ...  ;  

Remember that this function will return ȰÔÒÕÅȱ only once for each button hit, i.e. it will return 

ȰÆÁÌÓÅȱ on subsequent calls, until the button is released and then pressed again. 

However, as students of embedded systems, you will eventually need to learn how to handle 

push-buttons, switches, keyboards and other electro-mechanical input signals reliably. (A good 

place to start is to study the source code of the AVR-BED library functions.) 

Getting back to the task at hand, the formula relating Celcius to Fahrenheit is: 

 °F = (9 / 5) x °C + 32 

Recall that the result of an integer division is truncated to the nearest lower whole number, so 

the expression (9 / 5) evaluates to 1. Clearly this will give the wrong result if used in the above 

formula. A workaround would be to use floating-point arithmetic, but this generates more object 

code, runs slower than integer arithmetic and it would complicate the display of numeric data.  

A better solution is to stick with integer operations where expressions can be rearranged to yield 

the required accuracy of results. In our example, the compiler can be coerced to perform the 

multiplication by 9 before the division by 5, by rewriting the formula , thusȣ 

 deg_F = (9  *  deg_C)  /  5 + 32;  

Test this formula with a calculator, doing the multiply-by-9 before the divide-by-5, with a few 

random values of degrees C, to satisfy yourself that it yields adequate accuracy. 

(ÅÒÅ ÉÓ ÔÈÅ ÃÏÍÐÌÅÔÅ ÐÒÏÇÒÁÍ ÌÉÓÔÉÎÇȣ 

/**  
 * Project:  C_lesson2  |  Lesson 2, Example 4  
 * File:     C_lesson2_ex4_main.c  
 * Author:   <your name>  < date created>  
 *  
 * This program demonstrates some concepts using integer ari thmetic.  
 * It converts degrees Celcius to Fahrenheit.  
 * It also shows usage of library functions for timing and push - button input.  
 */  
#include  <avr/io.h>  
#include  <stdlib.h>  
#include  <string.h>  
#include  "lib_avrbed.h"  
 
// Text strings to display  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 27 of 56 Last revised: 4 July 2020 

char   MenuBar[]  = "A+5 B+10 C=0 D - 1" ;  
char   Blanks []   = "                " ;      // array of 16 spaces  
 
int   main( void )  
{  
    static  unsigned  long   start_of_50ms_interval ;  
    static  int   last_deg_C ;     // save last deg_C value here  
    int    deg_C = 0;            // initialize deg_C  
    int    deg_F;  
    char   buff [20];  
 
    lcd_initialise ();              // Initialize I/O ports and LCD module  
    lcd_command( LCD_CURSOR_OFF);   // Cursor OFF, display ON  
    lcd_cursor_posn (1,  0);  
    lcd_print_string ( MenuBar);     // S how menu text on bottom line  
    TC1_initialize ();              // Initialize the timer TC1  
    GLOBAL_INT_ENABLE();           // Enable interrupts  
 
    last_deg_C  = 999;  
    start_of_50ms_interval  = milliseconds ();   // capture starting time  
 
    while  (  1 )    // loop forever  
    {  
        // Every 50ms, do a button scan...  
        if  ( milliseconds ()  >= ( start_of_50ms_interval  + 50))   // 50ms interval ended  
        {  
            ButtonScan (4);  
            start_of_50ms_interval  = milliseconds ();   // start of next 50ms interval  
        }  
 
        // Check for a button hit  
        if  ( button_hit ('A'))   deg_C = deg_C + 5;  
        if  ( button_hit ('B'))   deg_C = deg_C + 10;  
        if  ( button_hit ('C'))   deg_C = 0;  
        if  ( button_hit ('D'))   deg_C = deg_C -  1;  
 
        // If the temperature has changed, update the displayed data  
        if  ( deg_C !=  last_deg_C )  
        {  
            lcd_cursor_posn (0,  0);        // clear top line  
            lcd_print_string ( Blanks );  
 
            // Convert deg.C to deg.F  
            deg_F = (9  *  deg_C)  /  5 + 32;  
 
            itoa ( deg_C,  buff ,  10);        // Display deg_C  
            lcd_cursor_posn (0,  2);  
            lcd_print_string ( buff );  
            lcd_write_char (0xDF);         // add degree symbol  
            lcd_print_string ( "C = " );  
 
            itoa ( deg_F,  buff ,  10);        // Display deg_F  
            lcd_print_string ( buff );  
            lcd_write_char (0xDF);         // add degree symbol  
            lcd_write_char ('F');  
 
            last_deg_C  = deg_C;           // save the new de g_C value  
        }  
 
    }   // end while  
}  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 28 of 56 Last revised: 4 July 2020 

Take a moment to study the workings of the program, in particular the timing of the button scan 

routine and the display update sequence. Note that the display is updated only when the 

displayed data changes, i.e. the user changes the degrees C setting. This prevents the display from 

flickering. 

.ÏÔÅ ÁÌÓÏ ÔÈÁÔ ÔÈÅ ÐÒÏÇÒÁÍ ÉÓ ÍÉÓÓÉÎÇ ÓÏÍÅÔÈÉÎÇȢ 4ÈÅ ȰÒÅÑÕÉÒÅÍÅÎÔÓ ÓÐÅÃÉÆÉÃÁÔÉÏÎȱ ÉÍÐÏÓÅÄ 

limits on the temperature range, i.e. Ĭ10 to +250 °C. You can easily add some code, after the tests 

for button hits, to restrain the value of deg_C, for example: 

        if  ( deg_C > 250 )   deg_C = 250;  

If there is anything in the program code ÔÈÁÔ ÙÏÕ ÄÏÎȭÔ ÕÎÄÅÒÓÔÁÎÄ ɉÅȢÇȢ ÔÈÅ ËÅÙ×ÏÒÄ ȰÓÔÁÔÉÃȱɊȟ 

please ÒÅÆÅÒ ÔÏ ÔÈÅ Ȱ#-less Reference ManuÁÌȱ ÆÏÒ ÅØÐÌÁÎÁÔÉÏÎȢ 

This photo shows the output to be expected on the AVR-BED ÄÉÓÐÌÁÙȣ 

 

 

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 29 of 56 Last revised: 4 July 2020 

A word about coding style  

Good coding style makes a program look more elegant, makes it easier to read, easier to debug 

and reduces the likelihood of making mistakes. 

Proper use of Ȱindentsȱ, i.e. the leading blank spaces on a line before a statement, is very 

important for code readability. Here are a few guidelines to begin with: 

¶ An opening brace after a keyword such as Ȱwhileȱȟ Ȱforȱȟ Ȱifȱȟ Ȱelseȱȟ ÅÔÃȟ ÓÈÏÕÌÄ ÂÅ on a 

new line at the same indent level as the keyword. Statements in between an opening 

brace and matching closinÇ ÂÒÁÃÅȟ ÁÌÓÏ ÔÅÒÍÅÄ Á ȰÃÏÍÐÏÕÎÄ ÓÔÁÔÅÍÅÎÔȱȟ ÓÈÏÕÌÄ all be 

indented one level (typically 1 tab or 4 spaces). 

¶ Tabs may be used for leading indents, but shall not be used anywhere else on a line. 

¶ Source lines should not exceed 100 character places. 

¶ Leave one or two blank lines (no more than two) between functions. 

¶ A space shall be inserted after keywords. 

¶ A space shall be inserted on either side of a binary operator ( +, - , * ,  / ,  &, | , ̂  ). 

roo = wombat + tail;   // correct  
emu = emu+1;           // prohibited  
mask = mask &0xFF;     // prohibited  

¶ A space shall be inserted on either side of assignment operators ( =, +=, &=,  etc ), also 

comparison and logical operators (  ==, >=, <=, !=, &&, ||  ). 

if (signal != 0) result = TRUE;    // correct  
if (signal!=0) result=TRUE;        // prohibited  

¶ No space shall be inserted between a unary operator and its operand, e.g. 

mask = mask & ~(1 << 4);    // corre ct  
mask = mask & ~ (1 << 4) ;   // prohibited  
if ( ! isprint(c)) ... ;       // correct  

¶ No space shall be inserted between an array name and its index expression, e.g. 

value = lookup[idx];     // correct  
value = lookup [idx];    // prohibited  

¶ No space shall be inserted between a function name and its argument list, e.g. 

strcpy ( s, t );        // correct  
strcpy  ( s, t );       // prohibited  

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 30 of 56 Last revised: 4 July 2020 

Lesson 3 ï Analogue-to-Digital Conversion 

AVR Analogue Input using the ADC 

Refer to the device datasheet: Ȱ!4ÍÅÇÁτψͺψψͺρφψͺÍÅgaAVR-Data-Sheet-τπππςπχτȢÐÄÆȱȟ 

chapter 24, page 257. The ADC peripheral in the ATmega328P is functionally identical, so you 

can use the same data-sheet. (The ATmega328/P/PB  data-sheet is substantially bigger.) 

The AVR on-chip analogue-to-digital converter (ADC) has a variety of operating modes and 

options. The simplest mode is to let it run automatically, taking new readings as frequently as it 

can. This mode is usable only if a single channel is to be read continuously. Otherwise, it is 

necessary to use manual triggering mode. 

ADC modes and options are configured using a couple of 8-bit command/status registers, named 

ADCSRA and ADMUX. Refer to the data-sheet to learn the purpose of each of the bits in these two 

registers.  

Bits of parti cular interest in register ADCSRA are: ADEN (bit 7), ADSC (bit 6), ADATE (bit 5), 

ADPS2, ADPS1, ADPS0 (bits 2, 1, 0).  In register ADMUX the bits of particular  interest are: REFS0 

(bit 6), ADLAR (bit 5), MUX3 (bit 3), MUX2 (bit 2), MUX1 (bit 1) and MUX0 (bit 0).  

Example: 

To configure the ADC for continuous reading of input ADC3 (= I/O pin PC3), using the 
device DC supply as the voltage reference (AVCC), and the ADC clocked at F_OSC / 64, the 
register initialisation  would be:  

    ADCSRA = 0b11100110;  // = 0xE6  

    ADMUX  = 0b01000011;  // = 0x43  

4ÈÅ !$# ÃÏÎÖÅÒÓÉÏÎ ÒÅÓÕÌÔ ÉÓ ρπ ÂÉÔÓȟ ×ÈÉÃÈ ÄÏÅÓÎȭÔ ÆÉÔ ÉÎÔÏ ÁÎ ψ-bit register, so a pair of registers 

is provided in the ADC to hold the conversion result. These are named ADCH and ADCL for the 

high-order and low-order bytes, resp. 7ÈÅÎ ȰÊÏÉÎÅÄȱ ÔÏÇÅÔÈÅÒ ÔÏ ÍÁËÅ Á ρφ-bit integer word, the 

10-bit result can be either left or right justified in the word. Usually, an application would need 

all 10 bits, to get maximum reading accuracy. To set up the ADC to right-justify the 10-bit result  

ÉÎ ÔÈÅ ÒÅÇÉÓÔÅÒ ÐÁÉÒ !$#(ȡ!$#,ȟ ×ÒÉÔÅ Á π ÔÏ Ȭ!$,!2ȭ ɉÂÉÔ υ ÏÆ ÒÅÇÉÓÔÅÒ !$-58Ɋ. 

In some applications, only 8-bit precision may be needed. There is a setup option for the ADC to 

place the most significant 8 bits of the result into the register ADCH, so that only one register 

needs to be accessed to fetch the result. In speed-critical applications, this option may be 

preferable. Setting bit ADLAR (bit 5 of register ADMUX) high will cause the 10-bit result to be 

left-justified in ADCH:ADCL, so you only need to read the single 8-bit register, ADCH, containing 

the 8 most significant bits. 

,ÅÔȭÓ ÄÅÖÅÌÏÐ Á # ÆÕÎÃÔÉÏÎ ÔÏ ÒÅÁÄ ÔÈÅ ÖÏÌÔÁÇÅ ÏÎ ÁÎy given ADC input pin. The function will have 

one entry argument to specify which ADC input is to be read. The function will return an integer 

value being the 10-bit conversion result, i.e. a number in the range 0 to 1023. The function 

ȰÐÒÏÔÏÔÙÐÅȱ ÄÅÃÌÁÒÁÔÉÏÎ ÉÓȡ 

unsigned   ADC_ReadInput ( BYTE muxsel ) ;  

The argument muxsel  is a number representing the ADC input pin. For example, to read the 

voltage on analogue input ADC3 (= pin PC3), the arg. value would be 3. Note that the data type 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 31 of 56 Last revised: 4 July 2020 

ȰBYTEȱ ÍÕÓÔ ÂÅ ÄÅÆÉÎÅÄ ÁÓ ȰÕÎÓÉÇÎÅÄ ÃÈÁÒȱ ɉÁÓ ÄÅÓÃÒÉÂÅÄ ÉÎ ÔÈÅ Ȱ#-less Reference Manualȱ, page 

8, under the heading Data Types). The return data type is unsigned  int  (×ÈÅÒÅ Ȱint ȱ ÉÓ implied, 

so may be omitted). 

An ADC reading represents the voltage on the selected input pin as a proportion of a reference 

voltage. There is a choice of reference voltage sources, e.g. external reference (= AREF pin), 

internal precision voltage reference (= 1.1V), or the device DC supply voltage (AVCC = +5V). 

A conversion result (reading) of 1023 represents full-scale (100%) of the reference. Thus, if the 

selected reference is AVCC (+5V), full-scale would be 5.0V. If an external reference is selected, 

say AREF = 3.0V, then the full-scale reading (1023) represents 3.0V.  A reading at 50% of full-

scale (512) would represent 1.5V, and so on. 

The first thing the function needs to do is to select the voltage reference source and the input pin 

for reading. Both these things are achieved by writing into the register ADMUX. The following 

code selects the ADC supply pin (AVCC = +5V) for the reference and sets the input multiplexer 

bits to select the required analogue input, passed to the function as its argument, muxsel . 

    ADMUX = 0x40 + muxsel ;   // Select Vref = AVCC (+5V);  select MUX channel  

Preferably, the function should also check that the argument value is valid. It must be in the range 

0 to 15, but there may be other constraints imposed by the application. The AVR-BED, for 

example, can use only ADC1 ~ ADC5 (i.e. pins PC1 ~ PC5) for analogue inputs. 

The next thing the function needs to do is set up the ADC control registers for the required mode 

of operation, which is to perform a single manual conversion on the given input. This is achieved 

by the following code: 

    ADCSRA = 0x06;                // Set prescaler to divide F_SYS by 64  

    ADCSRA = ADCSRA | (1 << 7) ;    / /  Turn on  the ADC (bit7 = 1)  

    ADCSRA = ADCSRA | (1 << 6) ;    // Start single conversion  (bit6 = 1)  

The ADC clock is derived from the system clock, the frequency of which is divided by a power of 

two (i.e. 2, 4, 8, 16, 32, 64, 128) to get the desired ADC clock rate. There is a trade-off between 

conversion accuracy and speed. For most applications, the ADC clock should be in the range 

62.5kHz to 500kHz. Assuming the system clock is 8MHz and the pre-scaler is set to divide by 64, 

the ADC clock rate would be 125kHz. (Refer to datasheet for other pre-scaler values.) 

When bit 6 of ADCSRA is set high, conversion is started. When the conversion is completed, the 

ADC will clear this bit. The function must wait until bit 6 is clear before reading the result 

registers. This can be done with a do-nothing Ȱ×ÈÉÌÅȱ ÌÏÏÐȟ ÔÈÕÓȡ 

 while  ( ( ADCSRA & (1 << 6)) !=  0)  
 {  
     ;   // wait till conversion done (ADSC == 0)  

 }  

Bit 6 of ADCSRA is singled out by bitwise !.$ȭÉÎÇ the register value with a bitmask (1 << 6). 

When bit 6 is Low (0), the conditional expression (ADCSRA & (1 << 6)  will  evaluate to zero. 

Finally, the function must read the result out of the ADC register pair ADCH:ADCL and return 

this value. This is done by the code here: 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 32 of 56 Last revised: 4 July 2020 

    low_byte  = ADCL; 

    result  = (( unsigned )  ADCH) << 8;   // High - order byte (2 LS bits)  

    result  += low_byte ;   // Add low - order 8 bits  

    return   result ;  

The low-order byte ADCL is read out first, assuming a 10-bit result is required. This is essential 

to proper ADC operation. (See data-sheet for details.) The register ADCL is assigned to a 

temporary variable, low_byte . The high-order byte ADCH is then read into the 16-bit result and 

shifted into the correct position (high-order 8 bits). Note that the 8-bit register value is coerced 

into a 16-ÂÉÔ ÉÎÔÅÇÅÒ ÂÙ ÕÓÉÎÇ Á ȰÃÁÓÔȱȟ ÉÎ ÔÈÉÓ ÃÁÓÅ ɉunsigned ) ADCH. Without the cast, an 8-bit 

value shifted left 8 bit places would evaluate to zero ɀ not the desired outcome! 

Putting it all together, complete with banner comments, the function definition looks like this: 

/*  
 * Function ADC_ReadInput() starts a one - off conversion on the given input, waits for  
 * the conver sion cycle to complete, then returns the 10 - bit result.  
 *  
 * Entry arg:  muxsel = ADC MUX input select:  1 = ADC1, 2 = ADC2, ... 7 = ADC7  
 *             (ADC0, ADC8..13 N/A, 14 = 1.1V internal ref, 15 = GND/0V) 
 *  
 * Note:  The function assumes the select ed ADC port pin is already configured as an  
 *        input and that its internal pull - up resistor is disabled.  
 */  
unsigned   ADC_ReadInput( BYTE muxsel )  
{  
    BYTE  low_byte ;  
    unsigned   result  = 0;  
 
    if  ( muxsel  == 0 ||  muxsel  > 15)   return  0;   // PC0/ADC0 is N/A (= LCD_E)  
 
    ADMUX = 0x40 + muxsel ;   // Select Vref = AVCC (+5V); select MUX channel  
 
    ADCSRA = 0x06;             // Set prescaler to F_SYS/64  
    SET_BIT(ADCSRA, ADEN);    // Enable A DC 
    SET_BIT(ADCSRA, ADSC);    // Start conversion  
 
    while  ( TEST_BIT(ADCSRA, ADSC) !=  0)  
    {  
        ;   // wait till conversion done (ADSC == 0)  
    }  
 
    low_byte  = ADCL; 
    result  = (( unsigned )  ADCH) << 8;   // High - order byte (2 LS bits)  
    res ult  += low_byte ;   // Add low - order 8 bits  
 
    return   result ;  
}  
 

This function is included in the AVR-BED code library. The code differs a little from the preceding 

snippets, but its operation is identical. The only remarkable difference is the use of expressions 

using ȰÍÁÃÒÏÓȱ ÓÕÃÈ ÁÓ 3%4ʍ")4ƽƛƾ, 4%34ʍ")4ƽƛƾ, etc. 

This is a good place to learn about macrosȢ 0ÌÅÁÓÅ ÒÅÁÄ ÔÈÅ ÓÅÃÔÉÏÎ ÏÎ ÍÁÃÒÏÓ ÉÎ ÔÈÅ Ȱ#-less 

2ÅÆÅÒÅÎÃÅ -ÁÎÕÁÌȱȟ ÐÁÇÅ σȟ ÕÎÄÅÒ ÔÈÅ ÈÅÁÄÉÎÇȡ #define MACRO_NAME ȣ . The manual explains 

how to define macros and how to use them in a program. 

Definitions of macros used in the ADC read function, copied from the code library: 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 33 of 56 Last revised: 4 July 2020 

#define  TEST_BIT(var,  bit)    ((var)  & (1<<bit))  

#define  SET_BIT(var,  bit)     ((var)  |=  (1<<bit))  

#define  CLEAR_BIT(var,  bit)   ((va r)  &= ~(1<<bit))  

The argument var  may be a register, byte or integer variable of any size. Arg bit  is a number 

representing the bit position (in var ) to be modified or tested. These macros provide more 

readable expressions than the equivalent raw code. For example, to set bit 5 of register PORTB 

high, without affecting any other bits, we could write: 

    PORTB = PORTB |  (1  << 5) ;  

But using a macro, the equivalent statement is simply: 

    SET_BIT( PORTB,  5) ;  

)Ô ÇÅÔÓ ÂÅÔÔÅÒȣ 4ÈÅ !62 '## ÃÏÍÐÉÌÅÒ ɉÁÃÔÕÁÌÌÙ ÔÈÅ ÈÅÁÄÅÒ ÆÉÌÅ ȰÁÖÒȾÉÏȢÈȱɊ ÃÏÎÔÁÉÎÓ ÄÅÆÉÎÉÔÉÏÎÓ 

for all of the register bit names found in the ATmega88/328/P data-sheet. So, instead of using a 

meaningless number, we can write the bitȭÓ name. For example, in the above ADC function, 

instead of writing the soÍÅ×ÈÁÔ ÃÒÙÐÔÉÃ ÃÏÄÅȣ 

    ADCSRA = ADCSRA | (1 << 7);   / /  Turn on  the ADC (bit7 = 1)  

    ADCSRA = ADCSRA | (1 << 6);   // Start single conversion  (bit6 = 1)  

ȣ ÔÈÅ ÌÉÂÒÁÒÙ ÆÕÎÃÔÉÏÎ ÕÓÅÓ ÔÈÅ ÅÑÕÉÖÁÌÅÎÔȟ ÂÕÔ ÍÏÒÅ ÒÅÁÄÁÂÌÅ macro ÃÏÄÅȣ 

    SET_BIT(ADCSRA, ADEN);     // Enable ADC  

    SET_BIT(ADCSRA, ADSC);    // Start conversion  

ȣ ×ÈÅÒÅ ADEN and ADSC are register bits (i.e. symbolic constants with values 7 and 6, resp.)  

defined in the header file. A key benefit of using names for bit positions instead of raw numbers 

is that you are less likely to make a mistake transferring numbers from a data-sheet. 

Likewise, the conditionaÌ ÅØÐÒÅÓÓÉÏÎ ÉÎ ÔÈÅ Ȱ×ÈÉÌÅȱ ÌÏÏÐ ÓÔÁÔÅÍÅÎÔȣ 

    while  ( ( ADCSRA & (1 << 6)) !=  0)  ...  

has been replaced with a more elegant form using a macro, thus: 

    while  ( TEST_BIT(ADCSRA, ADSC) !=  0)  ...  

The relational operator (!= ) is redundant, as the macro TEST_BIT evaluates to either TRUE or 

FALSE, so the statement could have simplified further to this: 

    while  ( TEST_BIT(ADCSRA, ADSC)) ...  

Observe that the way a macro (with arguments) is used in a program is very similar to a function 

call, but the way macros are defined is much different to functions. Where the compiler finds a 

macro expression in a program, it simply substitutes the text comprising the macro definition 

and it substitutes the respective arguments. Thus, the code generated by a macro expression is 

replicated for every instance of the macro appearing in a program. Conversely, the code 

generated by the compiler for a function definitio n is instantiated only once. The same function 

code is executed wherever a call to that function appears in a program.  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 34 of 56 Last revised: 4 July 2020 

Consequently, macro definitions should be kept short, in particular for macros used often in a 

program. Otherwise, a function is preferable. Macros are often used instead of functions where 

ÔÈÅ ÃÏÄÅ ÍÕÓÔ ÅØÅÃÕÔÅ ÑÕÉÃËÌÙȟ ÂÅÃÁÕÓÅ ÍÁÃÒÏÓ ÁÖÏÉÄ ÔÈÅ ȰÏÖÅÒÈÅÁÄȱ (delays) of function calling, 

argument passing and returning. Exception: There is a special type of function definition called 

ÁÎ ȰÉÎÌÉÎÅ ÆÕÎÃÔÉÏÎȱ ×ÈÉÃÈ ×ÏÒËÓ ÓÉÍÉÌÁÒÌÙ ÔÏ Á ÍÁÃÒÏȢ ,ÅÔȭÓ ÌÅÁÖÅ ÉÎÌÉÎÅ ÆÕÎÃÔÉÏÎÓ ÔÏ ÌÅÁÒÎ ÁÂÏÕÔ 

later, or better still, forget about them! 

There are more examples of macros in the AVR-BED library header file. 

ȣ 

Lesson 3, Exercise 1 

Write  a program to read the ADC conversion count (raw result) using the library function 

ADC_ReadInput( ). Transform the reading into a voltage and display both the count and 

voltage (0..5000 mV) on the LCD panel. 

An outline of a program to accomplish this is shown below. Your task is to fill in the gaps 

in the code to complete the program. For each semicolon appearing alone on a line, a 

single C statement is sufficient to perform the operation noted in the comment above it. 

 
 
/**  
 * File:  Lesson3_ex1_outline.c  
 *  
 * This program uses  the AVR on - chip ADC to measure the voltage on an input  
 * pin (PC3) wired to a potentiometer providing a 0..+5V signal source.  
 *  
 * This is just an outline. You need to fill in the gaps as noted in the code.  
 */  
#include  <avr/ io.h>  
#define  F_CPU  16000000UL     // CPU runs at 16 MHz  
 
// These header files contain definitions needed by library functions:  
#include  <util/delay.h>  
#include  <stdlib.h>  
#include  <string.h>  
#include  "lib_avrXmini.h"  // def's for lib_avrXmini.a  
 
 
int   main( void )  
{  
    char   strNu m[20];        // number converted to string  
    int    adc_count ;         // Raw ADC conversion count (0..1023)  
    int    reading_mV;        // Voltage reading (0..5000 mV)  
    int    last_reading ;      // previous ADC reading (last read)  
     
    lcd_initialis e();              // Initialize LCD module  
    lcd_command(LCD_CLR);         // Send command to clear LCD  
    lcd_command(LCD_CURSOR_OFF);  // Set Display ON, Cursor OFF  
     
    // Configure I/O pi n PC3 (= ADC3) as analogue input:  
    ;  
     
    lcd_cursor _posn(0,  0);  
    lcd_print_string( "ADC count: " );  
    lcd_cursor_posn(1,  0);  
    lcd_print_string( "Voltage: " );  
 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 35 of 56 Last revised: 4 July 2020 

    while  (TRUE)  // loop forever  
    {  
        adc_count  = ADC_ReadInput(3);     // Read pot input ADC3/PC3  
 
        if  ( adc_count  !=  last_read ing )    // if reading has changed...  
        {  
            // Clear displayed data  
            ;  
            ;  
 
            // Convert raw ADC reading (adc_count) to milliVolts (reading_mV)  
            ;    
 
            // Convert adc_count to string of deci mal digits in array strNum  
            ;  
             
            // Display adc_count on top line of LCD  
            ;  
            ;  
 
            // Convert reading _mV to string of decimal digits in array strNum  
            ;  
             
            // D isplay milliVolts on bottom line of LCD  
            ;  
            ;  
            lcd_print_string( " mV" );  
        }  
 
        last_reading  = adc_count ;  
        _delay_ms (50);  
 
    }   // end while  
}  

Here is a photo of the AVR-BED display with the completed program running... 

 

_____________________________________________________________________________________________________________ 

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 36 of 56 Last revised: 4 July 2020 

Lesson 4 ï Interrupts and Timer/Counter Module Usage  

General-purpose millisecond timer function  (revisited)  

You may recall from Lesson 2 that Á ÌÉÂÒÁÒÙ ÆÕÎÃÔÉÏÎ Ȱmilliseconds ɉ Ɋȱ ×ÁÓ ÕÓÅÄ ÉÎ Á ÐÒÏÇÒÁÍ ÔÏ 

convert degrees Celsius to Fahrenheit (page 26 or thereabouts). It would be wise to go back and 

refresh your memory on how the function was deployed. You may recall also that one of the 

reasons for using this function is that it gives improved reliability and precision for timing of 

ÅÖÅÎÔÓ ÁÎÄ ÄÅÌÁÙÓ ÔÈÁÎ ÔÈÅ ÐÒÉÍÉÔÉÖÅ ȰÓÏÆÔ×ÁÒÅ ÔÉÍÉÎÇ ÌÏÏÐȱ ÁÐÐÒÏÁÃÈ ×Å ÓÔÕÄÉÅÄ initially . 

Later in this lesson we will analyse the inner workings of the milliseconds( ) function. You will 

see how the function uses the AVR on-chip Timer/Counter module TC1 to achieve high precision 

for system timing. The function returns ÔÈÅ ÖÁÌÕÅ ÏÆ Á ȰÆÒÅÅ-ÒÕÎÎÉÎÇȱ ÃÏÕÎÔÅÒ ÖÁÒÉÁÂÌÅ ×ÈÉÃÈ is 

ÉÎÃÒÅÍÅÎÔÅÄ ȰÁÕÔÏÍÁÔÉÃÁÌÌÙȱ ÅÖÅÒÙ ÍÉÌÌÉÓÅÃÏÎÄȢ 7ÅÌÌȟ ÎÏÔ ÑÕÉÔÅ ÁÕÔÏÍÁÔÉÃÁÌÌÙȣ Á ȰÐÅÒÉÏÄÉÃ 

interrupt ÈÁÎÄÌÅÒȱ is needed to manage incrementing of the counter variable. So we also need to 

take a look at Ȱprocessor interruptsȱ -- what they are and how they can be exploited. 

Processor Interrupts  

!Î ȰÉÎÔÅÒÒÕÐÔȱ ÉÓ ÁÎ ÅÖÅÎÔ or logical condition, most usually a hardware signal from an on-chip 

peripheral module or from ÁÎ ÅØÔÅÒÎÁÌ ÄÅÖÉÃÅȟ ×ÈÉÃÈ ÔÒÉÇÇÅÒÓ Á ȰÄÅÔÏÕÒȱ ÆÒÏÍ ÎÏÒÍÁÌ ÐÒÏÇÒÁÍ 

execution. 4ÈÅ ȰÄÅÔÏÕÒȱ ÔÁËÅÓ ÔÈÅ ÆÏÒÍ ÏÆ Á ÓÐÅÃÉÁÌ ÆÕÎÃÔÉÏÎ ÔÅÒÍÅÄ ÁÎ ȰÉÎÔÅÒÒÕÐÔ ÓÅÒÖÉÃÅ 

ÒÏÕÔÉÎÅȱȟ ÁÂÂÒÅÖÉÁÔÅÄ Ȱ)32ȱȢ 7ÈÅÎ ÁÎ ÉÎÔÅÒÒÕÐÔ ÓÉÇÎÁÌ ɉÁÌÓÏ ÔÅÒÍÅÄ ȰÉÎÔÅÒÒÕÐÔ ÒÅÑÕÅÓÔȱ ÏÒ Ȱ)21ȱɊ 

is generated, the normal program flow is interrupted  immediately, but temporarily, while an 

interrupt service routine (ISR) is executed. When the ISR ÅØÉÔÓȟ ÉȢÅȢ ×ÈÅÎ ÔÈÅ )32 ȰÆÕÎÃÔÉÏÎȱ 

returns, normal program flow resumes from the point where it was interrupted. 

A different ISR must be defined (i.e. coded) for every possible source of interrupt signal which 

could occur in the application. The AVR processor provides special register bits to configure the 

interrupt actions of all available interrupt sources. By default, on processor reset, all IRQ sources 

are disabled, so nothing can interrupt normal program flow. In addition, therÅ ÉÓ Á ȰÇÌÏÂÁÌ 

ÉÎÔÅÒÒÕÐÔ ÆÌÁÇȱ ÉÎ ÔÈÅ CPU status register which is used to enable or disable all interrupts, 

regardless of the individual peripheral configurations. 

Examples of on-chip peripheral IRQ signals are:  ADC conversion complete, UART (serial port) 

data received, Timer/Counter register Ȱoverflowȱ, Top Count reached, Output Compare match, 

etc. This tutorial will be concerned primarily with Timer/Counter interrupts.  

The C code for an ISR looks like any other function, except, in the case of the AVR GCC compiler 

at least, ÔÈÅÙ ÁÌÌ ÈÁÖÅ ÔÈÅ ÓÁÍÅ ÎÁÍÅȟ Ȱ)32ȱȟ and a single argument which specifies the IRQ signal 

source.  An ISR definition takes the general form: 

ISR(  vector_number  )  
{  
  
    // C statements  
    ;  
    ;  

}  

ȣ ×ÈÅÒÅ the argument vector_number  is just a number assigned to the interrupt signal (IRQ) 

source. You can find these numbers in the AVR datasheet. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 37 of 56 Last revised: 4 July 2020 

4ÈÅ !4ÍÅÇÁ888 ÄÅÖÉÃÅ ÈÅÁÄÅÒ ÆÉÌÅ ɉÉÎÃÌÕÄÅÄ ÖÉÁ ȰÁÖÒȾÉÏȢÈȱɊ ÃÏÎÔÁÉÎÓ ÓÙÍÂÏÌÉÃ ÃÏÎÓÔÁÎÔÓȟ ÉȢÅȢ 

names, for all the IRQ vector numbers. Using names instead of raw numbers improves program 

readability and minimises the chance of a mistake. For example, to create an ISR function to 

ÈÁÎÄÌÅ ÁÎ ȰÏÖÅÒÆÌÏ×ȱ ÏÃÃÕÒÒÅÎÃÅ ÉÎ 4ÉÍÅÒȾ#ÏÕÎÔÅÒ 4#ρȟ ÔÈÅ )32 ÄÅÆÉÎÉÔÉÏÎ ×ÏÕÌÄ ÂÅȡ 

ISR(  TIMER1_OVF_vect )  

{  

    ;    // cod e to handle TC1 counter overflow  

    ;  

{  

Timer ȰÏÖÅÒÆÌÏ×ȱ ÏÃÃÕÒÓ ×ÈÅÎ Á ÔÉÍÅÒȾÃÏÕÎÔÅÒ ÒÅÇÉÓÔÅÒ ÒÏÌÌÓ ÏÖÅÒ ÆÒÏÍ ÉÔÓ ÍÁØÉÍÕÍ ÃÏÕÎÔ ÖÁÌÕÅ 

to zero, assuming it is configured to count upwards. This will make more sense when we look at 

how AVR Timer/Counters operate. 

Perhaps you are wondering where the term ȰÖÅÃÔÏÒȱ ÃÏÍÅÓ ÆÒÏÍȩ 7ÅÌÌȟ ÉÔȭÓ Á ÂÉÔ ÏÆ ÊÁÒÇÏÎȟ ÒÅÁÌÌÙȢ 

ȰVectorȱ is just ÁÎÏÔÈÅÒ ÔÅÒÍ ÆÏÒ ȰÐÏÉÎÔÅÒȱ ×ÈÉÃÈȟ ÉÎ ÔÕÒÎȟ ÉÓ ÁÎÏÔÈÅÒ ÎÁÍÅ ÆÏÒ Ȱmemory ÁÄÄÒÅÓÓȱ, 

in this context. The AVR program memory has a number of addresses reserved for a table of 

ȰÐÏÉÎÔÅÒÓȱȟ each pointer being the entry address of an ISR. There is a pointer assigned to every 

possible IRQ source. The IRQ vector  number  is simply an index into this table. 

By default, if there is no corresponding ISR (function) defined for any IRQ signal, its pointer will 

be initialized to the program reset  ÁÄÄÒÅÓÓȟ ÁÌÓÏ ËÎÏ×Î ÁÓ ÔÈÅ ȰÒÅÓÅÔ ÖÅÃÔÏÒȱȢ 4ÈÕÓȟ ÉÆ ÁÎ ÉÎÔÅÒÒÕÐÔ 

signal is generated and the respective IRQ source is enabled and global interrupts are enabled 

and there is no ISR defined for that particular IRQ source, then the program will just restart 

(which is usually better than doing something quite unpredictable!). 

Normally, a program will have an ISR defined for each expected (and enabled) source of 

interrup t (IRQ). When an IRQ is generated, for example when a timer register reaches a 

predefined value, the CPU completes the current instruction being executed, then it finds the 

vector number assigned to the IRQ source, then fetches the start address of the corresponding 

)32 ÁÎÄ ÊÕÍÐÓ ÔÏ ÉÔȢ 7ÈÅÎ Á Ȱ2ÅÔÕÒÎ ÆÒÏÍ )ÎÔÅÒÒÕÐÔȱ ÉÎÓÔÒÕÃÔÉÏÎ ÉÓ ÅØÅÃÕÔÅÄȟ ÔÈÅ )32 ÅØÉÔÓ ÁÎÄ 

program execution continues from the instruction following the one that was interrupted. 

4ÈÅ # ÃÏÍÐÉÌÅÒ ÇÅÎÅÒÁÔÅÓ ÔÈÅ ÎÅÃÅÓÓÁÒÙ ÃÏÄÅ ɉÉȢÅȢ ȰÈÉÄÄÅÎȱ ÌÏw-level MCU instructions) to ensure 

that no CPU Ȱ×ÏÒËÉÎÇȱ registers are corrupted ÄÕÒÉÎÇ ÔÈÅ )32 ȰÃÁÌÌȱ ÁÎÄ ȰÒÅÔÕÒÎȱ ÓÅÑÕÅÎÃÅÓȢ 

However, the compiler has no way of predicting when an IRQ will occur, so it cannot prevent an 

ISR from corrupting any global variables, I/O or peripheral registers which could be being 

accessed by the mainline program when an IRQ occurs. It is the responsibility of the application 

code to disable any source of interrupt, temporarily, where there is a chance that an ISR could 

corrupt a global variable or disrupt a critical  I/O operation. An example of this will be given when 

we look at the coding of the millisecond( ) function. 

But first, we need to understand AVR Timer/Counter module operation ɀ at least the modes that 

we will be concerned about.  

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 38 of 56 Last revised: 4 July 2020 

AVR Timer/Counter module operation -- Prerequisite reading:  

The AVR on-chip Timer/Counter  modules (TC0, TC1 and TC2) have a variety of operating modes 

and options to suit a broad variety of applications. They can be used to cause precise time delays, 

for program task timing, to generate a periodic pulse waveform on an output pin (with fixed or 

variable pulse width, hence a PWM signal), ÔÏ ÇÅÎÅÒÁÔÅ Á ȰÏÎÅ-ÓÈÏÔȱ ÐÕÌÓÅ ÏÕÔÐÕÔȟ to measure the 

period (hence frequency) of a periodic pulse signal applied to an input pin, or to measure the 

pulse width of an input signal (periodic or one-shot), and so on. 

Module TC0 is an 8-ÂÉÔ ÔÉÍÅÒȾÃÏÕÎÔÅÒȣ ÉÔ ÈÁÓ ÁÎ ψ-bit up/down counter register and a pair of 

Ȱ/ÕÔÐÕÔ #ÏÍÐÁÒÅȱ ÒÅgisters, each of size 8 bits. Module TC1 has 16-bit registers. In the simplest 

mode of operation, the timer count register (TCNTn) is incremented or decremented (i.e. it 

counts up or down in binary) every time a clock pulse occurs. There is a choice of clock sources. 

A clock signal can be derived from the CPU (system) clock, optionally via a frequency divider 

ÃÁÌÌÅÄ Á ȰÐÒÅ-ÓÃÁÌÅÒȱȟ ÏÒ ÁÎ ÅØÔÅÒÎÁÌ ÃÌÏÃË ÓÉÇÎÁÌ ÃÁÎ ÂÅ ÁÐÐÌÉÅÄ ÔÏ Á dedicated input pin. 

The remainder of this lesson assumes an understanding of AVR Timer/Counter operation, as 

detailed in the dÁÔÁÓÈÅÅÔ Ȱ!4ÍÅÇÁτψͺψψͺρφψͺÍÅÇÁ!62-Data-Sheet-τπππςπχτȢÐÄÆȱ, chapter 16, 

Ȱρφ-ÂÉÔ 4ÉÍÅÒȾ#ÏÕÎÔÅÒ ρ ×ÉÔÈ 07-ȱȟ page 120. To begin with, we will be concerned with timer 

modes termed Ȱ.ÏÒÍÁÌȱ ÁÎÄ Ȱ#ÌÅÁÒ 4ÉÍÅÒ ÏÎ #ÏÍÐÁÒÅȱ ɉ#4#ɊȢ  

Note: Timer/Counter modules in the ATmega328P (fitted on Arduino Nano and Atmel X-mini 

boards) are functionally identical to those in the ATmega88PA. 

Code to generate a periodic interrupt  

,ÅÔȭÓ ÌÏÏË ÁÔ ÓÏÍÅ ÅØample code, taken from the AVR-BED function library, which sets up 

Timer/Counter #1 to generate a regular interrupt request (IRQ) every millisecond, precisely. 

The library function, TC1_initialize ( ), copied below, initialises TC1 in CTC mode.  

/* Function:  TC1_initialize()  
 *  
 * This function initializes Timer - Counter  TC1 to generate a periodic interrupt  
 * request (IRQ) every millisecond precisely.  
 *  
 * TC1_initialize() must be called from main() before enabling global interrupts.  
 * Global inte rrupts must be enabled for the timer functions to work.  
 */  
void   TC1_ini tialize ()  
{  
    unsigned   top_count  = ( unsigned  long )  F_CPU /  8000;  
 
    TCCR1A = 0x00;  
    TCCR1B = 0b00001010;             // CTC mode;  Prescaler = F_CPU / 8  
 
    OCR1AH = HI_BYTE( top_count );     // Load OCR1A register for 1ms Top count  
    OCR1AL = LO_BYTE( top_count );  
 
    TC1_OCA_IRQ_ENABLE();            // Enable Output Compare (A) interrupts  
}  

The 16-bit counter register TCNT1 (comprising two 8-bit registers, TCNT1H and TCNT1L) is 

incremented on each clock pulse, i.e. it counts up automatically, until the count value matches 

the value stored in the Output Compare Register, OCR1A (also comprising two 8-bit registers, 

/#2ρ!( ÁÎÄ /#2ρ!,ɊȢ 4ÈÅÎȟ ÔÈÅ ÃÏÕÎÔ ÒÅÇÉÓÔÅÒ 4#.4ρ ÉÓ ÚÅÒÏÅÄ ȰÁÕÔÏÍÁÔÉÃÁÌÌÙȱ ɉÉȢÅȢ ×ÉÔÈÏÕÔ 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 39 of 56 Last revised: 4 July 2020 

software intervention) and the cycle repeats indefinitely.  Every time the Output Compare match 

occurs, an OCA interrupt request is generated. This mode of operation (CTC) is illustrated in the 

ÄÉÁÇÒÁÍ ÂÅÌÏ×ȣ 

The timer initialisation  function is simple. All it needs to do is set up the mode of operation, the 

clock source and pre-scaler divide ratio, and write the correct value into the Output Compare 

Register OCR1A, to give a counter cycle time (period) of one millisecond. The function must also 

enable ÉÎÔÅÒÒÕÐÔÓ ÏÎ Ȱ/ÕÔÐÕÔ #ÏÍÐÁÒÅ Ȭ!ȭ mÁÔÃÈȱ ÓÏ ÔÈÁÔ ÔÈÅ associated ISR will execute. 

The Timer/Counter mode is set by writing data into a pair of control registers, TCCR1A and 

TCCR1B. Since we do not want to generate a waveform on an output pin, the default value of zero 

is written to register TCCR1A (in case it was not already zero). CTC mode is selected by register 

TCCR1B, bits 3 and 4. (Refer to datasheet, Table 16-4, page 143.) Bits WGM12 and WGM13 must be 

set to 1 and 0, resp. to select Mode 4 (CTC). 

The counter clock source and pre-scaler value are selected by the 3 least-significant bits of 

register TCCR1B, i.e. bits CS12, CS11 and CS10. The function writes 010 (binary) to these bits so 

that the internal CPU clock is selected with a pre-scaler divide value of 8. The counter clock 

frequency will be 1/8 th of the CPU clock. 

The CPU clock frequency is defined in a header file somewhere by a macro (symbolic constant) 

×ÉÔÈ ÔÈÅ ÎÁÍÅ Ȱ&ͺ#05ȱȢ 4ÈÉÓ will  be set to either 8000000 (for 8MHz) or 16000000 (for 16MHz) 

depending on your hardware platform (AVR-BED, Nano-BED, Atmel X-mini, etc). The first line in 

ÔÈÅ ÆÕÎÃÔÉÏÎ 4#ρͺÉÎÉÔÉÁÌÉÚÅɉ Ɋ ÄÅÆÉÎÅÓ ÁÎ ÉÎÔÅÇÅÒ ÖÁÒÉÁÂÌÅ ȰÔÏÐͺÃÏÕÎÔȱ ÁÎÄ ÁÓÓÉÇÎÓ to it  a value of 

F_CPU divided by 8000. Thus, if F_CPU is 8MHz, top_count will be 1000, but if F_CPU is 16MHz, 

top_count will be 2000. 

The function sets the ȰOutput Compare !ȱ register value equal to top_count, which is the number 

of TC1 clock pulses in one millisecond. Consider the case where the CPU clock is 8MHz. The 

counter clock will be 1MHz (out of the pre-scaler), so therefore the clock period will be 1 micro-

second. How many micro-seconds are there in 1 millisecond? Answer: 1000. So, in this case, 

top_count must be 1000. This value is written to register OCR1A to give a counter cycle of 1ms. 

TCNT1 
register 
value 

Top Count  =  OCR1A register value 
1000 

0 

C
O

U
N

T
 

Time -- milliseconds 

0 1 2 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 40 of 56 Last revised: 4 July 2020 

Recall from the datasheet that 16-bit registers in the Timer/Counter modules are composed of 

two 8-bit registers, the high-order byte of which must be accessed (written to or read from) first. 

Hence, the C code to write register OCR1A consists of two statements, the first to write the high-

order byte to OCRA1H and the next to write the low-order byte to OCRA1L. 

Lastly, the function must enable interrupt requests generated by Output Compare match events. 

This is done by setting bit 1 (OCIE1A) in register TIMSK1. There are various ways of coding this, 

ÆÏÒ ÅØÁÍÐÌÅȟ ÕÓÉÎÇ ÔÈÅ ÆÁÍÉÌÉÁÒ ȰSET_BITȱ macro, ÌÉËÅ ÔÈÉÓȣ 

    SET_BIT(TIMSK1, OCIE1A);  

But that code might look a bit cryptic without a comment added, so the library header file has 

macro definitions which aim to improve code readability and to save you the tedium of looking 

up the datasheet to find the relevant register and bit names. 

// Macros to enable & di sable Timer - Counter TC1 Output Compare interrupt  

#define  TC1_OCA_IRQ_ENABLE()    (TIMSK1 |=  (1<<OCIE1A))  

#define  TC1_OCA_IRQ_DISABLE()   (TIMSK1 &= ~(1<<OCIE1A))  

The library also provides macros to extract the high-order byte or low-order byte from a 16-bit 

unsigned integer variableȢ 4ÒÙ ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÔÈÅ ×ÏÒËÉÎÇÓ ÏÆ ÔÈÅÓÅ ÍÁÃÒÏÓȣ 

#define  HI_BYTE(w)   (((w)  >> 8)  & 0xFF)  

#define  LO_BYTE(w)   ((w)  & 0xFF)  

The next part of this lesson will  analyse the Interrupt Service Routine (ISR) which is to be 

ÅØÅÃÕÔÅÄ ȰÁÕÔÏÍÁÔÉÃÁÌÌÙȱ ÁÔ ÔÈÅ ÅÎÄ ÏÆ ÅÖÅÒÙ timer/ counter cycle, i.e. every millisecond. 

4ÈÅ ÉÎÔÅÒÒÕÐÔ ȰÖÅÃÔÏÒȱ (number) associated with an Ȱ/ÕÔÐÕÔ #ÏÍÐÁÒÅ A ÍÁÔÃÈȱ ÉÓ ρςȢ ɉRefer to 

ATmega88 datasheet, Table 12-1, page 63.) For convenience, this number is defined in the 

ÃÏÍÐÉÌÅÒ ÈÅÁÄÅÒ ÆÉÌÅ ȰÉÏÍψψÐÁȢÈȱ ÂÙ Á symbolic constant: TIMER1_COMPA_vect. This vector 

number uniquely identifies the respective ISR to be executed whenever an OCA match occurs. 

Earlier in the lesson, we noted that the purpose of the ISR is simply to increment a count variable 

(32-bit unsigned long integer). This variable needs to be accessible by other functions, so it must 

be defined as either global or static. In a library, it should be defined as static  to hide it from 

ÕÓÅÒ ÁÐÐÌÉÃÁÔÉÏÎ ÆÕÎÃÔÉÏÎÓȢ 7ÈÙȩ ȣ "ÅÃÁÕÓÅ ÁÃÃÅÓÓÉÎÇ Á ÖÁÒÉÁÂÌÅ ×ÈÉÃÈ ÉÓ ȰÓÈÁÒÅÄȱ ÂÅÔ×ÅÅÎ ÁÎ 

ISR and ordinary functions can be problematic. A shared variable is best made accessible to 

application functions via a dedicated function designed to prevent errors. 

The shared count variable is declared this way: 

static  unsigned  long   count_millisecs ;  

The timer ISR code to handle the millisecond counter is very simple, as follows... 

ISR(  TIMER1_COMPA_vect )  
{  
    count_millisecs ++;    
}  

Application programs must first call the setup function, TC1_initialize( ), then enable global 

interrupts using the compiler built-in function, sei () . The library header file provides a macro 

to perform the same function using a less obscure name: GLOBAL_INT_ENABLE() .  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 41 of 56 Last revised: 4 July 2020 

!ÆÔÅÒ ÔÈÅ ÔÉÍÅÒ ÉÎÉÔÉÁÌÉÓÁÔÉÏÎȟ ÅÖÅÒÙÔÈÉÎÇ ÈÁÐÐÅÎÓ ȰÁÕÔÏÍÁÔÉÃÁÌÌÙȱȢ 4ÈÅ 4#ρ ÈÁÒÄ×ÁÒÅ ÇÅÎÅÒÁÔÅÓ 

a regular interrupt, every millisecond, causing the ISR to be executed. Hence, every millisecond, 

the variable count_millisecs  will be incremented. 

So, why not declare count_millisecs  to be a global variable and allow any function in the 

program to read its value, anytime? 

The reason is this: The variable count_millisecs is composed of 32 bits, i.e. 4 bytes of memory. 

The AVR CPU has an 8-bit internal data bus ɀ it reads data from memory one byte at a time. It 

takes 4 CPU cycles in succession to read a 4-byte variable. The CPU can be interrupted at any 

time during the 4-cycle sequence. Consider the consequences if a function in an application 

program was reading the (global) variable count_millisecs and an interrupt occurred half way 

through the 4-byte read sequence. Some of the bytes could have been updated by the ISR, while 

other byte(s) read before the IRQ occurred would have values that existed before the IRQ. 

Integer arithmetic operationsȟ ÉÎÃÌÕÄÉÎÇ ÉÎÃÒÅÍÅÎÔȟ ÃÁÎ ÉÎÖÏÌÖÅ Á ȰÃÁÒÒÙȱ ÒÉÐÐÌÉÎÇ ÔÈÒÏÕÇÈ Á 

multi -byte variable. So a copy, if interrupted, could result in corrupted data being copied. 

How can such data corruption be prevented? 

3ÉÍÐÌÅȣ $ÉÓÁÂÌÅ ÉÎÔÅÒÒÕÐÔÓȟ temporarily, while reading a multi-byte variable! 

4ÈÁÔȭÓ ×ÈÙ Á ÄÅÄÉÃÁÔÅÄ ÆÕÎÃÔÉÏÎ ÉÓ ÐÒÅÆÅÒÒÅÄ ÔÏ ÁÃÃÅÓÓ ÄÁÔÁ ÓÈÁÒÅÄ ×ÉÔÈ ÁÎ )32Ȣ 4ÈÅ ÆÕÎÃÔÉÏÎ 

handles the necessary precautions. Here is the library function which reads the millisecond 

counter variable, count_millisecs . 

/*  
 * Function:  milliseconds()  
 *  
 * This function returns the value of a free - running 32 - bit count variable,  
 * incremented every millisecond by Timer TC1 interrupt handler (ISR ) , above.  
 */  
unsigned  long  milliseconds ()  
{  
    unsigned  long  temp32bits ;  
 
    // Disable TC1 interrupt to prevent corruption of count_millisecs in case  
    // interrupted here in the middle of copying the 4 bytes (32 bits)...  
    TC1_OCA_IRQ_DISABLE( );  
 
    temp32bits  = count_millisecs ;   // capture the  count value (4 bytes)  
 
    // Re - enable TC1 interrupt  
    TC1_OCA_IRQ_ENABLE();  
 
    return   temp32bits ;  
}  

Although it may not be obvious from the C code, the following statement translates into MCU 

instructions to copy 4 bytes, one after the other, from count_millisecs to the temporary local 

variable, temp32bits. During this sequence of instructionsȟ /ÕÔÐÕÔ #ÏÍÐÁÒÅ Ȭ!ȭ (OCA) interrupts 

ÁÒÅ ÄÉÓÁÂÌÅÄȟ ÓÏ ÔÈÁÔ ÔÈÅ ÄÁÔÁ ÂÅÉÎÇ ÃÏÐÉÅÄ ÃÁÎȭÔ ÂÅ ÃÏÒÒÕÐÔÅÄȣ  

    temp32bi ts  = count_millisecs ;    

Consider what might happen if an Output Compare match occurred while the IRQ was disabled. 

Would the interrupt be missed, resulting in a count error ? (i.e. loss of one millisecond?)  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 42 of 56 Last revised: 4 July 2020 

.Ïȣ 4ÈÅ ÔÉÍÅÒ ÈÁÒÄ×ÁÒÅ ȰÒÅÍÅÍÂÅÒÓȱ ÔÈÅ OCA event and the IRQ will be generated and serviced 

by the ISR as soon as OCA interrupts are re-enabled. This assumes, of course, that it takes less 

than a millisecond to perform the 4-byte copy in the above function. (In fact it takes much, much 

less than a millisecond, so there will be no error in the millisecond count value.) 

The AVR-BED code library already contains an ISR to handle 4ÉÍÅÒρ ȰOCA matchȱ interrupts.  

There cannot be more than one ISR with the same vector number in a complete application. 

Therefore, a program which includes a library cannot define an alternative ISR using the same 

vector number as an ISR provided in the library.  

Inspection of the code in the AVR-BED library to implement the ISR for Timer1 will reveal that 

it does quite a lot more than simply increment a millisecond counter. The functionality provided 

by the additional code will be examined in a later lesson.  

Lesson 4, Exercise 1 (a)  

Use the milliseconds( ) function provided in the code library to measure the time duration 

of a momentary push-button press. Whenever the button is released, the duration of the 

last press is to be displayed on the LCD panel. The push-button is connected between pin 

PD2 and GND, so that a button press will cause the input signal to go Low. (This is labelled 

Ȱ"ÕÔÔÏÎ !ȱ ÏÎ ÔÈÅ !62-BED and X-mini board wiring diagrams.)  

Be sure your program activates the internal pull-up resistor on PD2, so that the input signal 

will read High while the button is released. The LCD should be updated only once each time 

the button is releasedȟ ÓÏ ÙÏÕÒ ÐÒÏÇÒÁÍ ×ÉÌÌ ÎÅÅÄ ÔÏ ÂÅ ÉÍÍÕÎÅ ÔÏ ȰÃÏÎÔÁÃÔ ÂÏÕÎÃÅȱȢ If 

ÙÏÕȭÒÅ ÕÎÓÕÒÅ ×ÈÁÔ ȰÃÏÎÔÁÃÔ ÂÏÕÎÃÅȱ ÉÓ ÁÌÌ ÁÂÏÕÔȟ ÄÏ Á ×ÅÂ ÓÅÁÒÃÈ ÔÏ ÆÉÎÄ ÏÕÔȢ 

Lesson 4, Exercise 1 (b)  

4Ï ÔÅÓÔ ÔÈÅ ÒÅÌÉÁÂÉÌÉÔÙ ÏÆ ÙÏÕÒ ȰÃÏÎÔÁÃÔ ÂÏÕÎÃÅ ÁÖÏÉÄÁÎÃÅȱ ÃÏÄÅ, the program should pulse a 

LED briefly whenever the button is pressed, but never when the button is released. The 

milliseconds( ) function should be used to set the LED pulse duration as well as measuring 

the button press time. That is the beauty of the function ɀ it can be used to time several 

independent events happening ȰÁÓÙÎÃÈÒÏÎÏÕÓÌÙȱ in an application. 

Timer/Counter setup to generate a variable -duty pulse waveform  (PWM)  

Another favourite application of micro-controller Timer/Counter modules is to generate a pulse 

waveform on an output pin, without requiring much software ȰÏÖÅÒÈÅÁÄȱ. Once the timer 

module is properly  initialised, a periodic pulse signal is generated by the on-chip logic. The 

period (hence frequency) and/or duty-cycle of the output pulse signal can be updated, i.e. 

changed, at any time simply by writing numbers into timer registers.  

Varying the pulse duty, i.e. the time that the output signal is in the High state, relative to the pulse 

ÐÅÒÉÏÄȟ ÉÓ ÃÏÍÍÏÎÌÙ ÔÅÒÍÅÄ ȰÐÕÌÓÅ ×ÉÄÔÈ ÍÏÄÕÌÁÔÉÏÎȱ ɉ07-ɊȢ There are many practical 

applications for PWM including DC motor speed control, temperature control, light dimmers, 

digital-to-analogue (D/A) conversion, and so on. 

4ÈÅ !62 4ÉÍÅÒȾ#ÏÕÎÔÅÒ ÍÏÄÕÌÅÓ ÈÁÖÅ ÖÁÒÉÏÕÓ ÍÏÄÅÓ ÆÏÒ ÇÅÎÅÒÁÔÉÎÇ 07- ÓÉÇÎÁÌÓȣ ÏÆ ÃÏurse. 

In the program example to follow, Timer #0 will be used in 8-ÂÉÔ Ȱ&ÁÓÔ 07-ȱ ÍÏÄÅȢ 4ÈÅ ψ-bit 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 43 of 56 Last revised: 4 July 2020 

ÔÉÍÅÒȾÃÏÕÎÔÅÒ ÒÅÇÉÓÔÅÒ 4#.4π ÈÁÓ Á Ȱ4ÏÐ #ÏÕÎÔȱ ɉÍÁØÉÍÕÍ ÖÁÌÕÅɊ ÏÆ ςυυȢ )Ô ÔÁkes 256 clock 

pulses to count through a full cycle (period). In applications where the frequency of the PWM 

output signal is not critical and is constant, the timer/counter register may be free-running, i.e. 

it rolls over from its maximum count value to zero and the full cycle repeats continuously. Thus, 

the PWM period will be (F_CPU / PS_DIV) / 256, where PS_DIV is the pre-scaler divide value. 

)Î Ȱ&ÁÓÔ 07-ȱ ÍÏÄÅȟ ÔÈÅ ÏÕÔÐÕÔ ÓÉÇÎÁÌ ÇÏÅÓ (ÉÇÈ ÁÔ ÔÈÅ ÅÎÄ ÏÆ each counter cycle (period), i.e. 

when the timer register value rolls over from 255 to 0. The PWM output pulse duty, i.e. pulse 

width , is determined by the Ȱ/ÕÔÐÕÔ #ÏÍÐÁÒÅ ÍÁÔÃÈȱ ÍÅÃÈÁÎÉÓÍ. When the timer register value 

matches the Output Compare register value, the output signal goes Low. In our example, the duty 

is set by the number ×ÒÉÔÔÅÎ ÉÎÔÏ /ÕÔÐÕÔ #ÏÍÐÁÒÅ 2ÅÇÉÓÔÅÒ Ȭ!ȭ ɉ/#2Î!ɊȢ Expressed as a ratio, the 

pulse duty is simply the OCA register value divided by the number of timer clocks in one cycle, 

i.e. duty = (OCR0A / 256). Multiply this by 100 to express the duty as a percentage. 

This diagram illustrates the Fast PWM mode of operation. Note that the output pulse duty is 

simply the ratio of OCR0A register value to the period. 100% duty occurs with OCR0A = 255.  

&ÏÒ ÒÅÌÉÁÂÌÅ ȰÇÌÉÔÃÈ ÆÒÅÅȱ ÏÐÅÒÁÔÉÏÎȟ ÈÏ×ÅÖÅÒȟ ÔÈÅ ÄÕÔÙ ÒÅÇÉÓÔÅÒ ÓÈÏÕÌÄ ÂÅ ÕÐÄÁÔÅÄ ÏÎÌÙ ×ÈÅÎ ÔÈÅ 

timer register rolls over, i.e. immediately at the end of a cycle. This requirement is easily satisfied 

by generating an interrupt on every timer Ȱoverflowȱ event. The associated interrupt service 

routine (ISR) handles the update of the duty register, OCR0A, simply by copying the duty value 

from a global variable which may be modified anytime. The ISR takes care of synchronisation. 

TCNT0 
register 
value 

Top Count  =  TCNT0 maximum value = 255 
255 

0 

Timer  clocks 
0 256 512 

192 

64 
 duty =  OCR0A value  = 64 

duty = OCR0A  value  =  192 

    PWM 
  OUTPUT 
 

High 

Low 

DUTY 
 

DUTY 
 

PERIOD 
 

PERIOD 
 

 COUNT 
 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 44 of 56 Last revised: 4 July 2020 

A timer setup function is required to do the following: 

¶ Select the required timer module (TC0) and its mode of operation (Fast PWM); 

¶ Select the Output Compare match register (OCR0A), which also determines the  

I/O pin for the PWM output signal (PD6 = OC0A); 

¶ Select the timer/counter clock source (internal CPU clock) and Pre-scaler divide  

value to give an appropriate PWM frequency (period) for the output signal; 

¶ %ÎÁÂÌÅ ÔÉÍÅÒȾÃÏÕÎÔÅÒ ȰÏÖÅÒÆÌÏ×ȱ (OVF) interrup ts; 

¶ Set an initial (default) value for the PWM duty (optional). 

!Î ȰÁÐÐÒÏÐÒÉÁÔÅ 07- ÆÒÅÑÕÅÎÃÙȱ ×ÉÌÌ ÄÅÐÅÎÄ ÏÎ ÔÈÅ ÕÓÅÒ ÁÐÐÌÉÃÁÔÉÏÎȢ ! ÈÅÁÔÅÒ ÃÏÎÔÒÏÌÌÅÒ ÏÒ 

ÏÔÈÅÒ ȰÐÒÏÃÅÓÓ ÃÏÎÔÒÏÌȱ ÁÐÐÌÉÃÁÔÉÏÎ ÍÉÇÈÔ get by with  a relatively low PWM frequency. A LED 

dimmer would need a frequency high enough to avoid perceptible flickering, but not exceeding 

ÔÈÅ ,%$ȭÓ ÒÅÓÐÏÎÓÅ ÔÉÍÅȢ !Î ÁÕÄÉÏ ÄÉÇÉÔÁÌ-to-analogue converter (DAC) would need a PWM 

frequency at least double the highest frequency in the audio range. Usually, one of the available 

pre-scaler divide values will produce a PWM frequency acceptable for the application. 

(ÅÒÅ ÉÓ ÁÎ ÅØÁÍÐÌÅ ÔÉÍÅÒ ÓÅÔÕÐ ÆÕÎÃÔÉÏÎȣ 

/* ---------------------------------------------------  
 * Functi on:  TC0_Setup()  
 *  
 * This function initializes Timer - Counter TC0 in 8 - bit Fast PWM mode  
 * to generate a variable - duty pulse waveform on pin OC0A (= PD6).  
 *  
 *  Note: The application program must enable global interrupts to  
 *       activate the ISR, he nce to generate a PW M output signal.  
 */   

void   TC0_Setup()  
{  
    TCCR0A = 0b10000011;         // Fast PWM mode enabled on pin OC1A/PD6  
    TCCR0B = 2;                  // Pre - scaler = F_CPU / 8  
    OCR0A = 0;                   // Load OCR0A register for PWM duty = 0  
 
    TC0_OVF_IRQ_ENABLE();        // I nterrupt on timer  Over f low  (OVF) 
}  

0ÌÅÁÓÅ ÒÅÆÅÒ ÔÏ ÔÈÅ !4ÍÅÇÁψψ ÄÁÔÁÓÈÅÅÔȟ ÃÈÁÐÔÅÒ ρυȟ Ȱψ-ÂÉÔ 4ÉÍÅÒȾ#ÏÕÎÔÅÒͺπ ÍÏÄÕÌÅȱ ÆÏÒ Á ÆÕÌÌ 

description of Fast PWM mode. In particular, see section 15.9.1 under Ȱ2ÅÇÉÓÔÅÒ $ÅÓÃÒÉÐÔÉÏÎȱȟ 

Table 15-3, Table 15-8 and section 15.9.2 for details of timer configuration bits in control 

registers TCCR0A and TCCR0B, which are initialised in the above function. 

The timer period, hence PWM output frequency is determined by the CPU clock frequency 

(#defined as F_CPU) and the pre-scaler divide value (3 LS bits of register TCCR0B). The table 

below shows the available options where F_CPU is 16MHz. 

TCCR0B [2:0] Pre-scaler divisor PWM freq. (Hz) 

1 1 62500.000  

2 8 7812. 500 

3 64 976.563  

4 256 244.141  

5 1024 61.035        



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 45 of 56 Last revised: 4 July 2020 

Here is the code for the ISR which performs the PWM duty register updateȣ 

/*  
 * Timer - Counter TC0 Interrupt Service Routine  
 *  
 * The timer will generate an IQR, hence this routine will be executed, when the  
 * timer registe r (T CNT0) rolls over from the MAX count value ( 255) to zero (0).  
 * On every timer overflow, t he PWM output pin (PD6/OC0A) will be set HIGH .  
 *  
 * The PWM duty (set by register OCR0A) is updated here.  
 * To avoid erratic PWM behaviour, OCR0A must not be modified  anywhere else.  
 */  

ISR(  TIMER0_OVF_vect )  
{  
    OCR0A = g_PWM_duty;    // Update duty from global variable  
}  

It is possible to set an arbitrary  value for the PWM frequency using a timer mode in which the 

period is set by one Output Compare register (OCR0A) while the PWM duty is set by the other 

register (OCR0B). In this mode, the timer count register will not overflow. The counter is reset 

and thÅ ÃÙÃÌÅ ÒÅÐÅÁÔÓ ×ÈÅÎÅÖÅÒ ÔÈÅ ÃÏÕÎÔ ÖÁÌÕÅ ɉ4#.4πɊ ÒÅÁÃÈÅÓ ÔÈÅ Ȱ4ÏÐ #ÏÕÎÔȱ ÖÁÌÕÅ ÓÔÏÒÅÄ 

in OCR0Aȟ ÔÈÅ ȰÐÅÒÉÏÄ ÒÅÇÉÓÔÅÒȱȢ !Î ÉÎÔÅÒÒÕÐÔ ÒÅÑÕÅÓÔ ÉÓ ÇÅÎÅÒÁÔÅÄ ÂÙ ÁÎ /ÕÔÐÕÔ #ÏÍÐÁÒÅ ȬAȭ 

match which occurs at the end of every timer cycle. 

For example, if the timer period is set to 250 (by writing 249 into register OCR0A) then the 

available options for PWM output frequency will be as shown here: 

TCCR0B [2:0] Pre-scaler divisor PWM freq. (Hz) 

1 1 64,0 00 

2 8 8,000  

3 64 1,000  

4 256 250 

Again, the table shows PWM frequencies available with a CPU clock rate of 16 MHz. If using a 

hardware platform with F_CPU = 8 MHz (e.g. the original AVR-BED), then the PWM frequencies 

will be halved, of course. 

The duty register value cannot be greater than the period. Consequently, for any given pre-scaler 

setting, the resolution (accuracy) of the PWM duty depends on the period. In fact, the resolution 

is simply the reciprocal of the period. For example, if the period is set to 250 (timer clocks), then 

the duty resolution is 1/250 (= 0.004, or 0.4% FS). But if the period is set to 100 (giving a 2.5x 

increase in PWM frequency) then the duty resolution drops to 1/100 (= 0.01, or 1% FS). Hence, 

the resolution gets worse as the PWM frequency increases (for any given pre-scaler setting).  

To greatly improve PWM duty resolution, a 16-bit timer/counter module (TC1) may be used. 

However, there is always a trade-off between PWM resolution and output frequency. 

There are not many options for pre-scaler values. For audio signal generation, an output sample 

rate (i.e. PWM frequency) in the range 32kHz ~  40kHz would be ideal. This cannot be achieved 

in ȰFast PWMȱ mode without severely compromising the PWM duty resolution. The period 

register (OCR0A) would need to be set to 50 to obtain a PWM frequency of 40kHz. So the duty 

resolution would be reduced to 1/50 (= 2% FS) ɀ the equivalent of a 6-bit DAC (approx..). 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 46 of 56 Last revised: 4 July 2020 

A work -around would be to reduce the system clock frequency to 8MHz, but doing so would 

compromise the CPU performance, of course. There is a better work-around. Another mode of 

operation of Timer TC0 is known as ȰPhase Correct PWMȱ (or  ȰDual Slopeȱ counter mode). 

Selecting this mode will result in the PWM frequency being about half of that using ȰFast PWMȱ 

mode, for the same Pre-scaler setting and Top Count value. For example, if the Pre-scale divisor 

is set to 1 and the Top Count (OCR0A) is set to 198, giving a PWM period of 200 clocks, then the 

PWM frequency would be 40kHz and the duty resolution would be 1/200 (= 0.5% FS). 

Lesson 4, Exercise 2 (a)  

Write a simple program to test TC0 Fast PWM mode using the setup function and ISR 

presented above. (Note: These functions are not provided in the AVR-BED code library.) 

Your program will need to declare a single-byte global variable, g_PWM_duty, which is 

accessed by the ISR. Try initialising this variable to various values in the range 0 to 255 and 

observe the output waveform on an oscilloscope*. Also try changing the PWM frequency. 

Lesson 4, Exercise 2 (b)  

Extend the program in Ex. 2 (a) so that a pair of push-buttons (A and B) can be used to set 

ÔÈÅ 07- ÄÕÔÙȢ 5ÓÅ "ÕÔÔÏÎ Ȭ!ȭ ÔÏ ÉÎÃÒÅÁÓÅ ÔÈÅ 07- ÄÕÔÙ ÂÙ ρπϷ ×ÈÅÎ ÈÉÔȠ "ÕÔÔÏÎ Ȭ"ȭ ÔÏ 

decrease the duty by 10%. Ensure the duty is limited to the range 0 to 100%. 

The PWM duty is to be displayed on the LCD panel as a percentage. To avoid flickering, the 

display should be updated only when the duty value changes. 

The program may use library functions to detect button hits, as in an earlier exercise. 

Lesson 4, Exercise 2 (c)  

Modify the program in Ex. 2 (b) so that the PWM duty is controlled by a potentiometer 

connected to pin PC3/ADC3. The pot sources a variable voltage ranging from 0 to +5V. 

The pot ADC reading (decimal number) and PWM duty (percentage) are to be displayed on 

the LCD panel. To avoid flickering, the display should be updated only when the duty value  

changes. 

* $ÏÎȭÔ ÈÁÖÅ ÁÎ ÏÓÃÉÌÌÏÓÃÏÐÅȩ 'ÏÏÇÌÅ Ȱ4ÒÕÅ 24!ȱȟ Äownload and install the Audio Analyzer 

software on your PC. The unrestricted trial version includes free audio oscilloscope and function 

ÇÅÎÅÒÁÔÏÒ ÅÍÕÌÁÔÏÒ ÁÐÐȭÓȢ 4ÈÅ ȬÓÃÏÐÅ ÒÅÑÕires a stereo AUX input to show the two input channels 

simultaneously. If you have a laptop without an AUX input socket, there are low-cost USB-audio 

ÁÄÁÐÔÅÒÓ ÁÖÁÉÌÁÂÌÅ ÆÒÏÍ ÏÎÌÉÎÅ ÓÕÐÐÌÉÅÒÓȢ "Å×ÁÒÅ ÔÈÁÔ ÔÈÅ ȬÓÃÏÐÅ ÂÁÎÄ×ÉÄÔÈ ÉÓ ÌÉÍÉÔÅÄ ÔÏ ÁÂÏÕÔ 

20kHz. PulsÅ ×ÁÖÅÆÏÒÍÓ ÁÔ ÆÒÅÑÕÅÎÃÉÅÓ ÁÂÏÖÅ ςË(Ú ×ÉÌÌ ÁÐÐÅÁÒ ȰÒÏÕÎÄÅÄȱ ÂÅÃÁÕÓÅ ÈÉÇÈ-order 

harmonics are filtered out. 

 

  



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 47 of 56 Last revised: 4 July 2020 

Lesson 5 ï State Machine method in Software Design  

General State-Machine Concept 

The diagram below shows the essential elements of a Ȱstate machineȱ. In a simple hardware 

ÉÍÐÌÅÍÅÎÔÁÔÉÏÎȟ ÔÈÅ ȰÓÔÁÔÅ ÒÅÇÉÓÔÅÒȱ ×ÏÕÌÄ ÂÅ ÃÏÍÐÒÉÓÅÄ ÏÆ Á ÓÅÔ ÏÆ ÆÌÉÐ-flops. The number of 

possible states is just 2 raised to the power N, where N is the number of flip-flops. In a complex 

state machine having a very large number of states, the state register would exist in a memory 

device of some sort. Hardware state-machines are commonly implemented with  programmable 

logic devices (CPLD, FPGA, etc). 

4ÈÅ Ȱlogicȱ ÂÌÏÃË ÍÏÎÉÔÏÒÓ input signals (which may be internal or externally generated) during 

the current state to determine what output signals (actions) need to be generated and what state 

transition  (if any) needs to occur. 

)Æ ÔÈÅ ȰÎÅØÔ ÓÔÁÔÅȱ can be triggered by an input signal (event), it ÉÓ ÃÁÌÌÅÄ ÁÎ ȰÁÓÙÎÃÈÒÏÎÏÕÓȱ ÓÔÁÔe 

machine. Some applications may need all state changes to be synchronized to a clock signal, in 

×ÈÉÃÈ ÃÁÓÅ ÉÔ ÉÓ ÃÁÌÌÅÄ Á ȰÓÙÎÃÈÒÏÎÏÕÓȱ state machine. Input signals are also synchronized to the 

clock so that state changes can only occur on a clock transition. 

The same general model applies to software state-ÍÁÃÈÉÎÅ ÁÒÃÈÉÔÅÃÔÕÒÅȢ 4ÈÅ ȰÓÔÁÔÅ ÒÅÇÉÓÔÅÒȱ ÉÓ 

simply a static (permanent) ÉÎÔÅÇÅÒ ÖÁÒÉÁÂÌÅȟ ÃÏÍÍÏÎÌÙ ÃÁÌÌÅÄ ÔÈÅ ȰÓÔÁÔÅ ÖÁÒÉÁÂÌÅȱȢ The state 

variable has a finite  number of values representing valid states. For each possible state, the 

program code tests the input conditions, generates outputs and, in some cases, changes the state. 

This happens continuously in an infinite loop. 

Probably the best way to explain how a software state-machine works is by an example. 

Count-down timer for switching AC appliance s  

A digital timer is required for the purpose of switching off an AC-powered cooking or heating 
appliance, or maybe a light, after a preset time has elapsed. The timer is to be started manually. 
Such a device might be used to turn off the heater in a clothes drying cabinet, or to ensure that a 
deep-fryer or other electric cooking appliance is not accidentally left on after use. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 48 of 56 Last revised: 4 July 2020 

A description ÏÆ ÔÈÅ ÔÉÍÅÒ ÏÐÅÒÁÔÉÏÎ ×ÉÌÌ ÓÅÒÖÅ ÁÓ Á ȰÒÅÑÕÉÒÅÍÅÎÔÓ ÓÐÅÃÉÆÉÃÁÔÉÏÎȱȣ  

4ÈÅ ȰÕÓÅÒ ÉÎÔÅÒÆÁÃÅȱ ÃÏÎÓÉÓÔÓ ÏÆ τ ÐÕÓÈ-buttons, one LED status indicator, an LCD panel and a 
beeper. There are 3 outputs:  a signal to drive a relay which switches power to the AC appliance, 
an output for the status LED and a signal to drive the beeper (e.g. a PWM output).  

4ÈÅ ÂÕÔÔÏÎ ÆÕÎÃÔÉÏÎÓ ÁÒÅȡ Ȱ(ÏÕÒÓȱȟ Ȱ-ÉÎÕÔÅÓȱȟ Ȱ3ÔÏÐȾ2ÅÓÅÔȱ ÁÎÄ Ȱ3ÔÁÒÔȱȢ 

7ÈÅÎ ÆÉÒÓÔ ÐÏ×ÅÒÅÄ ÕÐ ÏÒ ÒÅÓÅÔȟ ÔÈÅ ÄÅÖÉÃÅ ÅÎÔÅÒÓ Á ÓÔÁÔÅ ÉÎ ×ÈÉÃÈ ÔÈÅ ÕÓÅÒ ÃÁÎ ÓÅÔ ÔÈÅ Ȱ/.-ÔÉÍÅȱ 
using the Hours and Minutes buttons. The ON-time is initially  zero. While the hours setting stays 
at zero, the Minutes button increments the ON-time setting by 1 minute, up to 10 minutes, then 
increments by 5, up to 30 minutes, thereafter incrementing by 10. Whenever the Minutes setting 
reaches 60, it is zeroed and the Hours setting is incremented. Otherwise, if the Hours setting is 
non-zero, the Minutes button adds 15 minutes. The Hours button adds 1 hour to the timer  
setting, but the maximum setting is at 6 hours (6:00). 

If the Stop/Reset button is pressed while in the Setting state, the ON-time is cleared (0:00). 

The Start button, when pressed, causes the relay driver output to activate and the count-down 
begins, provided of course that the ON-time setting is non-zero. When the timer expires, i.e. when 
the remaining time reaches zero, the relay output is de-activated and the beeper sounds for a 
fixed time, say 5 seconds. The device then re-ÅÎÔÅÒÓ ÔÈÅ Ȱ3ÅÔÔÉÎÇȱ ÓÔÁÔÅȢ 

If the Stop/Reset button is pressed while the count-down is active, i.e. while the relay output is 
active, the count-down is paused, i.e. stopped temporarily, and the output is de-activated. If the 
same button is pressed again (while the count-down is paused) then the device re-enters the 
Ȱ3ÅÔÔÉÎÇȱ ÓÔÁÔÅ ×ÉÔÈ ÔÈÅ /.-time cleared (0:00).  

If the Start button is pressed while the count-down is paused, the relay output is again energised 
and the count-down continues. 

While the relay driver output is active, the LED is lit. While the count-down is paused, the LED 
flashes at 2Hz. Otherwise, the LED is off. 

When the count-down timer reaches zero, the beeper is activated and a 5-second timer is started. 
When the beeper timer expires, the beeper is turned off. However, the device remains in this 
state until the Stop/Reset button is pressed and then it reverts back to the Setting state. 

The tricky part of software state-machine design is identifying the optimum (usually also the 

minimum) number of states required. In general, each ÓÔÁÔÅ ÉÓ Ȱ×ÁÉÔÉÎÇȱ ÆÏÒ ÏÎÅ ÏÒ ÍÏÒÅ ȰÅÖÅÎÔÓȱ 

to occur which might cause a transition to another state and/or a change in an output signal. The 

×ÏÒÄ Ȱ×ÁÉÔÉÎÇȱ ÉÓ ÉÎ ÑÕÏÔÅÓ ÂÅÃÁÕÓÅ Á ÓÔÁÔÅ-machine should never cause a delay to another task 

or Ȱprocessȱ which ÍÉÇÈÔ ÎÅÅÄ ÔÏ ÂÅ ÅØÅÃÕÔÉÎÇ ȰÃÏÎÃÕÒÒÅÎÔÌÙȱ ×ÉÔÈ ÔÈÅ ÓÔÁÔÅ ÍÁÃÈÉÎÅȢ 

It is not unusual for a software engineer to make changes to the number and/or purpose of 

device states identified  during product development. However, it is preferable that these 

changes are made during the design phase of a project, before coding commences. The later a 

change is made during the project, the more costly it is to implement the change. 

Another test for the validity of a proposed state is whether or not it is mutually exclusive of other 

states. Check if a proposed state already exists within another state, or combination of states. 

Exercise: 

Before reading any further, try to identify what states you think would make 

implementation of the appliance timer straight -forward. Then compare your results with 

the following states suggested by the author. 



___________________________________________________________________________________________________________________________________ 

AVR C Tutorial (draft - wip).docx Page 49 of 56 Last revised: 4 July 2020 

One obvious candidate for a ÓÔÁÔÅ ÉÓ ȰSÅÔÔÉÎÇȱ ɀ the state in which the ON-time is entered by the 

ÕÓÅÒȢ 4×Ï ÏÔÈÅÒ ÓÔÁÔÅÓ ÍÉÇÈÔ ÂÅ Ȱ/.ȱ ÁÎÄ Ȱ/&&ȱ ÂÅÃÁÕÓÅ ÔÈÅÓÅ ÁÒÅ ÃÌÅÁÒÌÙ ÔÈÅ ÒÅÌÁÙ-driver logic 

states. But, the ON-time can only be set while the relay output is off. Does this mean that the 

ȰSÅÔÔÉÎÇȱ ÓÔÁÔÅ ÉÓ ÔÈÅ ÓÁÍÅ ÁÓ Ȱ/&&ȱȩ -ÁÙÂÅȟ ÂÕÔ ÔÈÅÒÅ ÉÓ ÁÎÏÔÈÅÒ ÓÔÁÔÅȟ ÉȢÅȢ ȰPÁÕÓÅÄȱȟ ÄÕÒÉÎÇ ×ÈÉÃÈ 

the output is also Ȱ/&&ȱȟ ÂÕÔ ÓÅÔÔÉÎÇ ÉÓ ÎÏÔ ÐÅÒÍÉÔÔÅÄȢ 

If we proceeded to design our state machine based on the above choices, we would soon realize 

ÔÈÁÔ ÔÈÅ Ȱ/&&ȱ ÓÔÁÔÅ ÉÓ ÒÅÄÕÎÄÁÎÔȟ ÁÌÔÈÏÕÇÈ ÔÈÉÓ ÍÉÇÈÔ ÎÏÔ ÂÅ ÉÍÍÅÄÉÁÔÅÌÙ ÏÂÖÉÏÕÓȢ 4ÈÅ ÍÁÃÈÉÎÅ 

ÉÓ Ȱ/&&ȱ ×ÈÅÎ ÔÈÅ ÔÉÍÅÒ ÉÓ ÂÅÉÎÇ ÓÅÔ ɉÉȢÅȢ ÉÎ ÔÈÅ 3ÅÔÔÉÎÇ ÓÔÁÔÅɊ ÁÎÄ ×ÈÅÎ ÉÔ ÉÓ 0ÁÕÓÅÄȢ )Î ÅÆÆÅÃÔȟ 

Ȱ3ÅÔÔÉÎÇȱ ÁÎÄ Ȱ0ÁÕÓÅÄȱ ÁÒÅ ÂÏÔÈ Ȱ/&&ȱ ÓÔÁÔÅÓȢ  

There is yet another state where the timer has expired, the output is off and the beeper is 

sounding, before re-entering the Setting state. 

Hence, the machine can be implemented using four major states: 

Setting:  Monitor  button presses to set ON-time, or to activate the appliance. 

Active :  Count-down is enabled, relay driver is energised; waiting for the 

count-down timer to expire, or Stop/Reset button hit . 

Paused:  Count-down is suspended, relay driver is de-activated;  waiting for 

Stop/Reset or Start button hit. 

Beeper:  Beeper is sounding;  waiting for expiry of beeper timer, then a button 

press to exit. 

Setting stateΧ 
with hours and mins both at zero. 

Setting stateΧ 
after Hours or Mins button pressed. 

Active stateΧ  
waiting for timer expiry or Stop button press. 

Paused stateΧ  
waiting for Reset or Start button press. 

Beeper stateΧ 
waiting for Reset button (after beep). 

 

The only difference between the initial setting state (with time set at 0:00) and subsequent 
setting state is the information displayed, i.e. the ÂÕÔÔÏÎ ȰÍÅÎÕȱ ÏÎ ÔÈÅ ÂÏÔÔÏÍ ÌÉÎÅȢ )Æ ÉÔ ÈÅÌÐÓȟ 
you could split the setting state into two separate statesȟ ÉȢÅȢ ÁÎ Ȱ)ÎÉÔÉÁÌȱ ÓÔÁÔÅ ÁÎÄ Á Ȱ3ÅÔÔÉÎÇȱ ÓÔÁÔÅȟ 
×ÈÅÒÅ ÔÈÅ Ȱ)ÎÉÔÉÁÌȱ ÓÔÁÔÅ ÉÓ ÅÎÔÅÒÅÄ ÏÎÌÙ ×ÈÅÎ ÔÈÅ ÔÉÍÅÒ ÓÅÔÔÉÎÇ ÉÓ ÃÌÅÁÒÅÄ ɉπȡππɊȢ 

 


